FROM RESEARCH Il ND USTR

‘Compiler-based Countermeasure Against Fault Attacks
ceate Cch

Thierno Barry* Damien Couroussé* Bruno Robisson**
*Univ. Grenoble Alpes, F-38000 Grenoble, France

- - CEA, LIST, Minatec Campus, F-38054 Grenoble, France
l&tl & l I ’ t **CEA-Tech DPACA, Gardanne, France
firstname.lasthame@cea.fr
CONTEXT
The goal is to implement the instruction duplication technique as a countermeasure against Fault
Attacks on an ARM 32-bit Microcontroller[1,2]. Operating inside a compiler allowed us to reduce the

security overhead thanks to the flexibility and code transformations opportunities offered by compilers

WORKFLOW The user identifies the portions of the program to protect

g Source @ to secure_ (“fault”)

*é Code Foo(> b){

O The user has a full control over parts of the code to protect

a *b + a;

}

C source code

@)
QO
-
(@]

T Instructions cannot be duplicated at the middle-end due to the SSA form
G) v
- [LLVM } smul = %a. %b Attempted %mul = %a, %b Unused and will be
e bytecode ’ duplication 5 C—
S %add = %mul, %a >~ %mul2 = mul %a, %b — removed by the Dead
%add %add = mul, %a _<|Code Elimination pass
LLVM bytecode %add2 = add %Zmul, 7%a —

We only select instructions that are suitable for duplication

llc Q destination sources
By default ¢ \ '/ \ .
o ° @ Y . multiply and accumulate: a, a, bismatched K

Instruction @ Q
Selection » we separately match: a followed by /
Instead

Instead of generating vregl, vreg2 I

Back-end

e Generation of 3-address instructions:
We generate vreg3, vregl, vreg2 /

Registers are allocated in favor of duplication

The register allocator tends to reduce register pressure: Reusing the allocated registers as soon as possible

When the liveness intervals (L) of registers are disjoint: L(vreg3) | N {L(vregl) . L(vreg2); =@

Register
Allocation

vreg3, vregl, vreg2 e . ro, ro, ril X

We introduce a constraint: \ / /

$dst + $src @ . ro, rl, r2

Instructions are duplicated before scheduling

ro, rl, r2 Duplication ro, rl, r2 | r5, [r3, #4]
Instruction r\5, [r\3, #4] > P@, r‘l, r2 Scheduling R P@, rl, r2
ScheC Before duplication r5, [r3, #4] r5, [r3, #4]
r5, [r3, #4] ro, rl, r2
Code Before scheduling After scheduling

Emission

Comparison with assembly approach

Instruction Transformation Duplication AES 8-bit NIST on ARM Cortex-M3

ro, ro, r2 rx, ro rx, ro Unprotected Protected Overhead
Assembly ro, rx, r2 rx, ro @ 8541 cycles | 17311 cycles| x 2.03

approach ro, rx, r2
ro, rx, r2
Our ro, rl, r2 ro, rl, r2
approach ro, rl, r2 @
FUTURE WORK & REFERENCES
FUTURE WORK REFERENCES
B Using code annotation for more flexibility when defining the code 1] Barenghi et al. Countermeasures against fault attacks on software implemented AES
regions to protect 2] Moro et al. Electromagnetic Fault Injection : Towards a Fault Model on a 32-bit Microcontroller

B Automatic identification of the most vulnerable parts of the program

. . . . LEGEND
B compiler-based implementation of the masking countermeasure

-ENIQ\SIJHCL)J} J Duplicable
NATEC

x Not duplicable

JoNIL
.

CEA LIST

