COGLIO

Deliverable D1.2.1

Specification of the Use Cases, first release

Editor Jean-Louis Lanet
Authors by alphabetical order:
Thierno Barry, CEA
Damien Couroussé, CEA
Philippe Jaillon, ENSMSE
Jean-Louis Lanet, XLIM
Bruno Robisson, ENSMSE

Version Revision: 159
Date lun., 13 oct. 2014 09:09:52 +0200
CEA ref. V13DACLEO14 - 14-0575

Copyright ANR COGITO ANR-13-INSE-0006-01

mailto:jean-louis.lanet@unilim.fr

PROJECT COGITO
DELIVERABLE D1.2.1

Contents
(1 Executive Summaryl| 3
2 Cryptographic Algorithm: AES|
2.1 Description| e e
2.2 Use of code polymorphism|, 5
3 Secure Algorithm: PIN Code verification| 6
Bl Motivationl. e 6
(3.2 Description| e e 7
[3.3 Use of code polymorphism| 7
4 General Purpose Algorithm: the JVM| 9
.1 Motivation|. L e e e e e e e e
4.2 Description] e 9
4.3 Useof code polymorphism| 11
S References| 12
List of Figures
(1 An 1mplementation example of the secure algorithmm C| 6

PRrROJECT COGITO
DELIVERABLE D1.2.1

1 Executive Summary

This report focuses on the different use cases of the COGITO project. We have chosen different
algorithms that have different characteristics in terms of usage frequency, security level and side
channel signature. The first one is the cryptographic algorithm AES; its side channel signature is
of prime importance while its usage is moderate but could be complex to implement. The second
one, the PIN code verification algorithm, is rarely used; its side channel signature is very important
and it has a very low complexity. The last one, the memory prefetch in a Java Virtual Machine, is
very frequently used, presents a very low complexity but is rarely protected against side channel and
security aspect is lower.

The case studies within the COGITO project contribute to the gathering of evidence for the bene-
fits of using code polymorphism. The results are aimed at raising awareness of the benefits of using
the deGoal technology in the smart card domain. The objective is to evaluate the advantages and
drawbacks of using code polymorphism in different phases of the smart card development. For that
purpose, beside the description of the algorithms we describe the evaluation process and the related
metrics we want to collect in order to asses if this technology is affordable for this application domain.

This deliverable is intended as the first release of the Use Case report. We plan to have a second
release of this deliverable.

R PROJECT COGITO
\ DELIVERABLE D1.2.1

2 Cryptographic Algorithm: AES

2.1 Description

AES has become a kind of benchmark reference when it comes to evaluate the effectiveness of a
generic protection scheme.

The AES cipher executes a number of round transformations on the input plain-text, where the
output of each round is the input of the next one. The number of round r is determined by the initial
key length: a 128-bit key uses 10 rounds, a 192-bit uses 12 and 256-bit key uses 14. Overall the
implementation of AES is achieved with only three types of operations: xor operation, table lookups
and 1-byte shifts. Each step operates on 128-bit blocks of data viewed as a 4 x 4 matrices of bytes.

input : A plaintext p of length 128 bits
input : A key k of length 128 bits
output: A ciphertext ¢ of length 128 bits

(ko,k1,...,kr) < KeySchedule (k);
¢ < AddRoundKey (p,ko);
fori< 1tordo

¢ < SubBytes (¢);

c < ShiftRows (¢);

¢ < MixColumns (c¢);

¢ < AddRoundKey (c);
end
¢ < SubBytes (¢);
¢ < ShiftRows (c);
¢ < AddRoundKey (c);

Algorithm 1: The AES encryption algorithm

Algorithm I describes AES encryption. Each round but the latter is composed of four processing
stages:

e AddRoundKey: this stage perform a bytes-addition in [F, between the plain-text and the round
key meaning a byte-xor operation.

e SubBytes: each byte in the plain-text is substituted by another one from the look-up table
(S-Box).

e ShiftRows: each row from i =0 to i = 3 of the 4x4 state matrix is cyclically i-bytes left shifted

e MixColumns: the four bytes of each column of the state are combined using an invertible linear
transformation.

Each round is composed of the same steps, except for the first that starts with an extra addition of a
round key and the last where the MixColumns operation is skipped.

R PROJECT COGITO
DELIVERABLE D1.2.1

2.2 Use of code polymorphism

Each processing stage in AES can be provided with a polymorphic implementation. From the point
of view of DPA attacks, the weakest points in AES are the execution of the first SubBytes and the
last AddRoundKey [MOPO7]]. In this use case, we will consider the overhead cost of using code
polymorphism for each of the sub-stages of AES with regards to security aspects. In particular,
considering the flexibility of the COGITO protection scheme, it is possible to selectively apply code
polymorphism on the code portions that are more likely to be under attacks. Otherwise said: on the
one hand, a full polymorphic implementation is expected to provide the highest degree of security
but with a higher overhead because of the execution time required for code generation. On the other
hand, carefully selecting the portions of AES where code polymorphism is applied is likely to reduce
the protection cost at the risk of providing lower security.

Several usage scenarii will be considered, considering a full polymorphic implementation of AES,
or selective application of polymorphism. We will provide for each scenario figures for the security
performance and for the protection overhead.

01N N BA W=

| NS T NS T NG i N0 I e e e e e T e e e Bl
W= O ORI WnN A~ W= O\

R PROJECT COGITO
DELIVERABLE D1.2.1

3 Secure Algorithm: PIN Code verification

3.1 Motivation

The PIN code verification procedure is one of the most attacked. Its purpose is to verify if the proposed
PIN value is equal to the stored one. Many attacks have been elaborated to retrieve the code including
attacks on the terminal itself [CCI11] using terminal sensors. But the most current attack are timing
attack against the verification algorithm. While the algorithm compares the proposed value byte by
byte one should infer analysing the behaviour of the target on which byte the algorithm stops the
verification. Hereafter is a naive verification algorithm.

At the beginning (line 8) the program checks if the user did not more than 3 trials before. Then it
compares line 13 byte by byte if the stored value pin is equal or not to the proposed value buffer. If
it does not match, the trial counter is decremented and the program memorizes this state and returns
a negative answer.

#define maxTries 3
int triesLeft = maxTries;

boolean verify (short[] buffer, short ofs, short len)
{
// No comparison if PIN is blocked
authenticated [0]= false;
if (triesLeft < 0)
return false ;
// Main comparison
for (short i=0; i < len; i++)
{
if (buffer[ofs+i] != pin[i])
{
triesLeft — ;
return false ;
}
}

// Comparison is successful
triesLeft = maxTries ;
authenticated [0O]= true ;
return true ;

Figure 1: An implementation example of the secure algorithm in C

Of course, the time needed by the algorithm to evaluate each digit increases with time and thus
offers a side channel to the attacker who needs just to evaluate the response time of the algorithm to
infer if the proposed digit was correct or not.

of12

l R PrOJECT COGITO
DELIVERABLE D1.2.1

Such a basic attack on a naive implementation of the PIN verification algorithm is very easy to
set up. For this reason smart card manufacturer have developed algorithms that are resistant to timing
attacks but also fault attacks. A fault attack needs to be synchronized, so often the first step of this
attack is to reverse the algorithm in order to have the know-how on the precise instant to fire the laser
beam.

We propose with this use case to evaluate the usage of deGoal to generate code that will avoid this
synchronization process. This algorithm is rarely used only once per session except while the card is
under attack. The time needed to generate the code is not a constraint.

3.2 Description

The algorithm that we use for this project is an improved version of the naive C version proposed
in the previous section. In particular, we have an integrity protection of the different fields (mainly
redundancy with bit inversion), which are checked before each usage. Of course PIN trial incremen-
tation before use is the basic coding rule. We implement also the secure conditional to detect transient
fault. The secure condition test twice the same value; if the second test is different from the prece-
dent without having modified any variable it implies that the environment (a fault attack) did it. We
implement also step counters to avoid control flow transfer due to a fault. If the program counter
is incremented by the environment (fault attack) it can jump anywhere and potentially bypass some
security tests. For this reason we mark important step in the algorithm and we verify before returning
that all steps have been executed. We also use constant time evaluation procedure to eliminate the
timing attack and secure constants to prevent an attack targeting boolean value. A false value is ob-
tained with all the bit of the cell to zero, and a true value is obtain if the contain of the cell is different
of zero. Of course an external event can modify a false value easily with a true value. We transfer the
sensitive fields into the RAM at the beginning of the algorithm which allows us to work only on the C
stack. We ensure consistency of the different fields used in the algorithm to avoid DoS attacks.

Such an algorithm is highly resistant to several attacks. Normally we have to introduce random
computations to desynchronize the traces. Code polymorphism will be used for that purpose but also
to avoid reverse engineering of the algorithm taking care that the other protections are not affected by
code polymorphism. We present hereafter the secure algorithm.

Each time an abnormal behaviour is detected a countermeasure must be taken. This part is out
of the study but can be blocking the current application by modifying its life cycle or blocking com-
pletely the card (card is mute).

3.3 Use of code polymorphism
In the secure algorithm, the evaluation section, i.e. the main comparison, should not be polymorphic

until we have the guarantee that the constant time evaluation is not altered. All the other parts of the
algorithm can be impacted by polymorphism.

JE

\ NR ProJEcT COGITO

DELIVERABLE D1.2.1

The evaluation process of the code polymorphism will take into account the ability to recognise
patterns by side channel but also the level of randomisation brought by polymorphism. For that
purpose, we will evaluate the EM traces with or without polymorphism in order to assess the benefits.
The memory footprint and the code generation process will be also evaluated.

l R PrOJECT COGITO
DELIVERABLE D1.2.1

4 General Purpose Algorithm: the JVM

4.1 Motivation

Recently, side channel analysis has become of interest to be used for reverse engineering purposes
(e.g. [VWGO06], [OSS™]). Reverse engineering of software is primarily known as the process of dis-
covering the source code from the software binaries or executables. It often involves detailed analysis
of the program and uses many methods such as analysis through observing information exchange, dis-
assembling or decompiling. There are many tools available on-line that provide all of these functions
and that even combine them to acquire the source code. Reverse engineering of Java Card applets is
much more difficult because the attacker does not have access to the binary files.

Power or EM analysis can be used to acquire parts of bytecode in order to be reverse engineered.
Once the collection of execution traces have been recovered by one of the attack methods, it can be
analysed. Then, various techniques may be constructed to affect its function on the card or reveal
sensitive information. Of course there is no guarantee that the collection of power traces covers the
whole software to analyse. The attacker has to exercise all the data input in order to generate different
traces to obtain a high coverage of the traces.

The traces can then be analysed with correlation or pattern recognition. To mitigate such an attack,
a solution is to change the pattern of each bytecode in order reduce the probability of recognition. The
pattern can be changed in the time axis including random delay or in the form of the pattern thanks to
code polymorphism.

4.2 Description

To successfully reverse engineer an unknown Java Card applet from a smart card, first, a dictionary
of patterns must be set up using a reference card. The process of reverse engineering begins with
the identification of bytecode instructions in the collected power traces. Since the reference card is
programmable, it allows the attacker to run testing applets that repeat one known instruction or that
repeat a small sequence of known instructions multiple times and then reveal a repeating pattern in
the power trace. By comparing the individual parts of the power trace that represent one instruction
to each other, a unique template that defines an instruction by its power trace can be constructed. A
template is usually constructed as an average power trace of multiple measurements of the same in-
struction. Moreover using correlation analysis one can recognise the common part of each instruction.

In fact a virtual processor acts as a real one with the same sequence of prefetch, decode and
execute cycle. In the JCVM interpretation loop, as described below, these sequences are clearly iden-
tifiable: the first part is the preamble, is to say the *prefetch - decode cycle of a virtual processor, then
the second part represents the execute cycle of bytecode, followed by a postamble that depends on the
type of bytecode being executed.

while (true) {
bc_item = NULL; /« Preambule =/
handler = bytecode_table[xvm_pc]; /+ Prefetch + decode x/
vm_pc++;

o[

PRrROJECT COGITO
DELIVERABLE D1.2.1

bc_action = handler (); /¥ Execute x/
if (bc_action < 0) {
if (!handle_excep())
return false;

}

switch (bc_action) {/x postambule x/
case O: continue ;
case ACTION RETURN:
i = handle_return (init_frame);

if (1 == RUN_RETURN)
return true;
go = (bool)(i != RETURN_FAIL);
break ;
case ACTION INVOKE:
exec_method = (method_t *x)bc_item;
break ;
case ACTION_NATIVE:
go = handle_native ();
break ;
case ACTION_NEW:
go = handle_new ();
break ;
case ACTION THROW:
go = handle_throw ((ref_t x)bc_item);
break;

The handler is a function pointer defined as: typedef int16 (*bc_handler) (void) ;. The
system table bytecode_table associates a bytecode value to a function pointers of type bc_handler:

const bc_handler bytecode_table[256] =
{

BC_nop, /x 0 */
BC _iconst_0O, /x 1 BC_aconst_null x/
BC _iconst_ml , /x 2 */
BC iconst_0O, /x 3 */

Each of these functions describes the behaviour of the instructions.

intl6 BC_iconst_0O(void)
{

return _iconst (0);

}

When executing the preamble, the processor handles two parameters that are attached to the byte-
code being read: (1) the index vm_pc (virtual machine program counter) in the table of bytecodes,

10412

l R PrOJECT COGITO
DELIVERABLE D1.2.1

(2) the address of the function handler to be executed. These two parameters are exploitable by an
attacker to recover information about the program under execution. vm_pc is the pointer to the array
of bytecodes representing the method, so it is a pointer to an array of bytes. By using side channel
analysis, the attacker can obtain numerous information: the variation in the preamble power curves
indicates the value of handler or bc_action. The first one gives directly the instruction, the sec-
ond gives the address of the instruction. Then, the execution of the bytecode provides a trace easily
identifiable with pattern recognition analysis; the execution time is also highly characteristic of the
bytecode value. So an attacker has in each bytecode execution four correlated information about the
instruction to be recognised.

4.3 Use of code polymorphism

We will limit the use of polymorphism on the prefetch cycle only. The difficulty with this case study
is the high frequency of the code execution. Indeed, considering that an attacker needs a very low
number of traces to recover information about the program under execution, it would be desirable to
change the form of a polymorphic prefetch at each execution. However, considering the overhead of
code generation with regards to code execution of the polymorphic code generated, this solution is
hardly acceptable in terms of performance. This issue can be a limit of our approach that we want to
investigate. We have backup solutions if the ratio compilation time vs. execution time is too high.

11412

PRrROJECT COGITO
DELIVERABLE D1.2.1

5 References

[CC11]

[MOPO7]

[0SST]

[VWGO06]

Liang Cai and Hao Chen. Touchlogger: Inferring keystrokes on touch screen from smart-
phone motion. In HotSec, 2011.

Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks: Revealing
the secrets of smart cards, volume 31. Springer, 2007.

David Oswald, Daehyun Strobel, Falk Schellenberg, Timo Kasper, and Christof Paar.
When reverse-engineering meets side-channel analysis — digital lockpicking in practice.

Dennis Vermoen, Marc Witteman, and Georgi N. Gaydadjiev. Reverse engineering of java
card applets using power analysis. Technical report, WISTP’2007, LNCS 4462, 2006.

12/12]

	Executive Summary
	Cryptographic Algorithm: AES
	Description
	Use of code polymorphism

	Secure Algorithm: PIN Code verification
	Motivation
	Description
	Use of code polymorphism

	General Purpose Algorithm: the JVM
	Motivation
	Description
	Use of code polymorphism

	References

