
Deliverable D1.2.2
Specification of the Use Cases, final version

Editor Jean-Louis Lanet
Authors by alphabetical order:

Thierno Barry, CEA
Damien Couroussé, CEA
Philippe Jaillon, ENSMSE
Jean-Louis Lanet, INRIA
Hélène Le Bouder, INRIA
Bruno Robisson, ENSMSE

Version Revision: 263
Date lun., 19 oct. 2015 13:55:19 +0200

CEA ref. DACLE – 15-0698

Copyright ANR COGITO ANR-13-INSE-0006-01

mailto:jean-louis.lanet@unilim.fr

PROJECT COGITO
DELIVERABLE D1.2.2

Contents

1 Executive Summary 3

2 Cryptographic Algorithm: AES 4

2.1 Description . 4

2.2 Use of code polymorphism . 5

3 Secure Algorithm: PIN Code verification 6

3.1 Motivation . 6

3.2 Description . 7

3.3 Use of code polymorphism . 8

4 General Purpose Algorithm: the JVM 9

4.1 Motivation . 9

4.2 Description . 9

4.3 Use of code polymorphism . 11

5 Evaluation process: collecting metrics 12

5.1 Aims . 12

5.2 Metrics . 12

5.3 Metrics of obfuscation by deGoal . 14

6 References 16

List of Figures

1 An implementation example of the secure algorithm in C 6

2 Correlation values and confidence interval for the correct and the best wrong keys on
an unprotected implementation of AES 8-bits. The attack is performed on the key byte 0 13

2/16

PROJECT COGITO
DELIVERABLE D1.2.2

1 Executive Summary

This report focuses on the different use cases of the COGITO project. We have chosen different
algorithms that have different characteristics in terms of usage frequency, security level and side
channel signature. The first one is the cryptographic algorithm AES; its side channel signature is
of prime importance while its usage is moderate but could be complex to implement. The second
one, the PIN code verification algorithm, is rarely used; its side channel signature is very important
and it has a very low complexity. The last one, the memory prefetch in a Java Virtual Machine, is
very frequently used, presents a very low complexity but is rarely protected against side channel and
security aspect is often considered as less important.

The case studies within the COGITO project contribute to the gathering of evidence for the bene-
fits of using code polymorphism. The results are aimed at raising awareness of the benefits of using
the deGoal technology in the smart card domain and more generally in the domain of secure embed-
ded devices. The objective is to evaluate the advantages and drawbacks of using code polymorphism
in different phases of the smart card development. For that purpose, beside the description of the
algorithms we describe the evaluation process and the related metrics we want to collect in order to
asses if this technology is affordable for this application domain.

It must be pointed out, that the metrics presented herecan evolve in the future, reflecting our
progresses within the project. For this reason, this document will probably be updated with the final
results.

3/16

PROJECT COGITO
DELIVERABLE D1.2.2

2 Cryptographic Algorithm: AES

2.1 Description

AES has become a kind of benchmark reference when it comes to evaluate the effectiveness of a
generic protection scheme.

The AES cipher executes a number of round transformations on the input plain-text, where the
output of each round is the input of the next one. The number of round r is determined by the initial
key length: a 128-bit key uses 10 rounds, a 192-bit uses 12 and 256-bit key uses 14. Overall the
implementation of AES is achieved with only three types of operations: xor operation, table lookups
and 1-byte shifts. Each step operates on 128-bit blocks of data viewed as a 4×4 matrices of bytes.

input : A plaintext p of length 128 bits
input : A key k of length 128 bits
output: A ciphertext c of length 128 bits

〈k0,k1, ...,kr〉 ← KeySchedule(k);
c← AddRoundKey (p,k0);
for i← 1 to r do

c← SubBytes (c);
c← ShiftRows (c);
c← MixColumns (c);
c← AddRoundKey (c);

end
c← SubBytes (c);
c← ShiftRows (c);
c← AddRoundKey (c);

Algorithm 1: The AES encryption algorithm

Algorithm 1 describes AES encryption. Each round but the latter is composed of four processing
stages:

• AddRoundKey: this stage perform a bytes-addition in F2 between the plain-text and the round
key meaning a byte-xor operation.

• SubBytes: each byte in the plain-text is substituted by another one from the look-up table
(S-Box).

• ShiftRows: each row from i = 0 to i = 3 of the 4x4 state matrix is cyclically i-bytes left shifted

• MixColumns: the four bytes of each column of the state are combined using an invertible linear
transformation.

Each round is composed of the same steps, except for the first that starts with an extra addition of a
round key and the last where the MixColumns operation is skipped.

4/16

PROJECT COGITO
DELIVERABLE D1.2.2

2.2 Use of code polymorphism

Each processing stage in AES can be provided with a polymorphic implementation. From the point
of view of DPA attacks, the weakest points in AES are the execution of the first SubBytes and the
last AddRoundKey [MOP07]. In this use case, we will consider the overhead cost of using code
polymorphism for each of the sub-stages of AES with regards to security aspects. In particular,
considering the flexibility of the COGITO protection scheme, it is possible to selectively apply code
polymorphism on the code portions that are more likely to be under attacks. Otherwise said: on the
one hand, a full polymorphic implementation is expected to provide the highest degree of security
but with a higher overhead because of the execution time required for code generation. On the other
hand, carefully selecting the portions of AES where code polymorphism is applied is likely to reduce
the protection cost at the risk of providing lower security.

Several usage scenarii will be considered, considering a full polymorphic implementation of AES,
or selective application of polymorphism. We will provide for each scenario figures for the security
performance and for the protection overhead.

5/16

PROJECT COGITO
DELIVERABLE D1.2.2

3 Secure Algorithm: PIN Code verification

3.1 Motivation

The PIN code verification procedure is one of the most attacked. Its purpose is to verify if the proposed
PIN value is equal to the stored one. Many attacks have been elaborated to retrieve the code including
attacks on the terminal itself [CC11] using terminal sensors. But the most current attack are timing
attack against the verification algorithm. While the algorithm compares the proposed value byte by
byte one should infer analysing the behaviour of the target on which byte the algorithm stops the
verification. Hereafter is a naive verification algorithm.

At the beginning (line 8) the program checks if the user did not more than 3 trials before. Then it
compares line 13 byte by byte if the stored value pin is equal or not to the proposed value buffer. If
it does not match, the trial counter is decremented and the program memorizes this state and returns
a negative answer.

1 # d e f i n e maxTr ies 3
2 i n t t r i e s L e f t = maxTr ies ;
3
4 b o o l e a n v e r i f y (s h o r t [] b u f f e r , s h o r t ofs , s h o r t l e n)
5 {
6 / / No compar i son i f PIN i s b l o c k e d
7 a u t h e n t i c a t e d = f a l s e ;
8 i f (t r i e s L e f t < 0)
9 re turn f a l s e ;

10 / / Main compar i son
11 f o r (s h o r t i =0 ; i < l e n ; i ++)
12 {
13 i f (b u f f e r [o f s + i] != p i n [i])
14 {
15 t r i e s L e f t −− ;
16 re turn f a l s e ;
17 }
18 }
19 / / Comparison i s s u c c e s s f u l
20 t r i e s L e f t = maxTr ies ;
21 a u t h e n t i c a t e d = t r u e ;
22 re turn t r u e ;
23 }

Figure 1: An implementation example of the secure algorithm in C

Of course, the time needed by the algorithm to evaluate each digit increases with time and thus
offers a side channel to the attacker who needs just to evaluate the response time of the algorithm to
infer if the proposed digit was correct or not.

6/16

PROJECT COGITO
DELIVERABLE D1.2.2

Such a basic attack on a naive implementation of the PIN verification algorithm is very easy to
set up. For this reason smart card manufacturer have developed algorithms that are resistant to timing
attacks but also fault attacks. A fault attack needs to be synchronized, so often the first step of this
attack is to reverse the algorithm in order to have the know-how on the precise instant to fire the laser
beam.

We propose with this use case to evaluate the usage of deGoal to generate code that will avoid this
synchronization process. This algorithm is rarely used only once per session except while the card is
under attack. The time needed to generate the code is not a constraint.

3.2 Description

The algorithm that we use for this project is an improved version of the naive C version proposed
in the previous section. In particular, we have an integrity protection of the different fields (mainly
redundancy with bit inversion), which are checked before each usage. Of course PIN trial incremen-
tation before use is the basic coding rule. We implement also the secure conditional to detect transient
fault. The secure condition test twice the same value; if the second test is different from the prece-
dent without having modified any variable it implies that the environment (a fault attack) did it. We
implement also step counters to avoid control flow transfer due to a fault. If the program counter
is incremented by the environment (fault attack) it can jump anywhere and potentially bypass some
security tests. For this reason we mark important step in the algorithm and we verify before returning
that all steps have been executed. We also use constant time evaluation procedure to eliminate the
timing attack and secure constants to prevent an attack targeting boolean value. A false value is ob-
tained with all the bit of the cell to zero, and a true value is obtain if the contain of the cell is different
of zero. Of course an external event can modify a false value easily with a true value. We transfer the
sensitive fields into the RAM at the beginning of the algorithm which allows us to work only on the C
stack. We ensure consistency of the different fields used in the algorithm to avoid DoS attacks.

Such an algorithm is highly resistant to several attacks. Normally we have to introduce random
computations to desynchronize the traces. Code polymorphism will be used for that purpose but also
to avoid reverse engineering of the algorithm taking care that the other protections are not affected by
code polymorphism. We present hereafter the secure algorithm.

1 b o o l e a n v e r i f y (s h o r t [] t r y) {
2 i n t t r i e s L e f t ;
3 t r i e s L e f t = S e c u r e d L o a d T r i e s () ;
4 i f (t r i e s L e f t < 0) {
5 re turn f a l s e ;
6 }
7 e l s e {
8 t r i e s L e f t −− ;
9 S e c u r e d S t o r e T r i e s (t r i e s L e f t) ;

10 i f (S e c u r e d L o a d T r i e s () != t r i e s L e f t) {
11 re turn f a l s e ;

7/16

PROJECT COGITO
DELIVERABLE D1.2.2

12 }
13 e l s e {
14 i f (Cons tan tT imeCompara i son (t r y , PIN) == t r u e) {
15 S e c u r e d S t o r e T r i e s (maxTr ies) ;
16 i f (S e c u r e d L o a d T r i e s () != maxTr ies) {
17 re turn f a l s e ;
18 }
19 re turn t r u e ;
20 }
21 e l s e {
22 re turn f a l s e ;
23 }
24 }
25 }
26 }

At line 3, the function SecureLoadTries() verifies the integrity of the TriesLeft field, while the
SecuredStoreTries() function computes the integrity and performs the secure storage. The com-
parison of the two arrays must be done in constant time using the function ConstantTimeComparaison().

Each time an abnormal behavior is detected a countermeasure must be taken. This part is out of the
study but can be blocking the current application by modifying its life cycle or blocking completely
the card (card is mute).

3.3 Use of code polymorphism

In the secure algorithm, the evaluation section, i.e. the main comparison, should not be polymorphic
until we have the guarantee that the constant time evaluation is not altered. All the other parts of the
algorithm can be impacted by polymorphism.

The evaluation process of the code polymorphism will take into account the ability to recognize
patterns by side channel but also the level of randomization brought by polymorphism. For that
purpose, we will evaluate the EM traces with or without polymorphism in order to assess the benefits.
The memory footprint and the code generation process will be also evaluated.

The ability to reverse the code is a metric of the efficiency of the deGoal approach. If acquiring
a couple of trace the attacker is able to reverse, to normalize the code i.e. eliminate the useless
instruction, the attacker will be able to bypass the countermeasure. We will evaluate the ability to
reverse the assembly code using our correlation algorithms.

8/16

PROJECT COGITO
DELIVERABLE D1.2.2

4 General Purpose Algorithm: the JVM

4.1 Motivation

Recently, side channel analysis has become of interest to be used for reverse engineering purposes
(e.g. [VWG06], [OSS+]). Reverse engineering of software is primarily known as the process of dis-
covering the source code from the software binaries or executables. It often involves detailed analysis
of the program and uses many methods such as analysis through observing information exchange, dis-
assembling or decompiling. There are many tools available on-line that provide all of these functions
and that even combine them to acquire the source code. Reverse engineering of Java Card applets is
much more difficult because the attacker does not have access to the binary files.

Power or EM analysis can be used to acquire parts of bytecode in order to be reverse engineered.
Once the collection of execution traces have been recovered by one of the attack methods, it can be
analysed. Then, various techniques may be constructed to affect its function on the card or reveal
sensitive information. Of course there is no guarantee that the collection of power traces covers the
whole software to analyse. The attacker has to exercise all the data input in order to generate different
traces to obtain a high coverage of the traces.

The traces can then be analysed with correlation or pattern recognition. To mitigate such an attack,
a solution is to change the pattern of each bytecode in order reduce the probability of recognition. The
pattern can be changed in the time axis including random delay or in the form of the pattern thanks to
code polymorphism.

4.2 Description

To successfully reverse engineer an unknown Java Card applet from a smart card, first, a dictionary
of patterns must be set up using a reference card. The process of reverse engineering begins with
the identification of bytecode instructions in the collected power traces. Since the reference card is
programmable, it allows the attacker to run testing applets that repeat one known instruction or that
repeat a small sequence of known instructions multiple times and then reveal a repeating pattern in
the power trace. By comparing the individual parts of the power trace that represent one instruction
to each other, a unique template that defines an instruction by its power trace can be constructed. A
template is usually constructed as an average power trace of multiple measurements of the same in-
struction. Moreover using correlation analysis one can recognise the common part of each instruction.

In fact a virtual processor acts as a real one with the same sequence of prefetch, decode and
execute cycle. In the JCVM interpretation loop, as described below, these sequences are clearly iden-
tifiable: the first part is the preamble, is to say the ’prefetch - decode cycle of a virtual processor, then
the second part represents the execute cycle of bytecode, followed by a postamble that depends on the
type of bytecode being executed.

whi le (t r u e) {
bc_ i t em = NULL; /∗ Preambule ∗ /
h a n d l e r = b y t e c o d e _ t a b l e [∗ vm_pc] ; /∗ P r e f e t c h + decode ∗ /
vm_pc ++;

9/16

PROJECT COGITO
DELIVERABLE D1.2.2

b c _ a c t i o n = h a n d l e r () ; /∗ E x e c u t e ∗ /
i f (b c _ a c t i o n < 0) {

i f (! h a n d l e _ e x c e p ())
re turn f a l s e ;

}
sw i t ch (b c _ a c t i o n) { /∗ p o s t a m b u l e ∗ /

case 0 : c o n t in u e ;
case ACTION_RETURN :

i = h a n d l e _ r e t u r n (i n i t _ f r a m e) ;
i f (i == RUN_RETURN)

re turn t r u e ;
go = (boo l) (i != RETURN_FAIL) ;
break ;

case ACTION_INVOKE :
exec_method = (method_t ∗) bc_ i t em ;
break ;

case ACTION_NATIVE :
go = h a n d l e _ n a t i v e () ;
break ;

case ACTION_NEW:
go = handle_new () ;
break ;

case ACTION_THROW:
go = h a n d l e _ t h r o w ((r e f _ t ∗) bc_ i t em) ;
break ;

}
}

The handler is a function pointer defined as: typedef int16 (*bc_handler)(void);. The
system table bytecode_table associates a bytecode value to a function pointers of type bc_handler:

c o n s t b c _ h a n d l e r b y t e c o d e _ t a b l e [2 5 6] =
{

BC_nop , /∗ 0 ∗ /
BC_iconst_0 , /∗ 1 B C _ a c o n s t _ n u l l ∗ /
BC_iconst_m1 , /∗ 2 ∗ /
BC_iconst_0 , /∗ 3 ∗ /
. . .
}

Each of these functions describes the behaviour of the instructions.

i n t 1 6 BC_icons t_0 (void)
{

re turn _ i c o n s t (0) ;
}

When executing the preamble, the processor handles two parameters that are attached to the byte-
code being read: (1) the index vm_pc (virtual machine program counter) in the table of bytecodes,

10/16

PROJECT COGITO
DELIVERABLE D1.2.2

(2) the address of the function handler to be executed. These two parameters are exploitable by an
attacker to recover information about the program under execution. vm_pc is the pointer to the array
of bytecodes representing the method, so it is a pointer to an array of bytes. By using side channel
analysis, the attacker can obtain numerous information: the variation in the preamble power curves
indicates the value of handler or bc_action. The first one gives directly the instruction, the sec-
ond gives the address of the instruction. Then, the execution of the bytecode provides a trace easily
identifiable with pattern recognition analysis; the execution time is also highly characteristic of the
bytecode value. So an attacker has in each bytecode execution four correlated information about the
instruction to be recognised.

4.3 Use of code polymorphism

We will limit the use of polymorphism on the prefetch cycle only. The difficulty with this case study
is the high frequency of the code execution. Indeed, considering that an attacker needs a very low
number of traces to recover information about the program under execution, it would be desirable to
change the form of a polymorphic prefetch at each execution. However, considering the overhead of
code generation with regards to code execution of the polymorphic code generated, this solution is
hardly acceptable in terms of performance. This issue can be a limit of our approach that we want to
investigate. We have backup solutions if the ratio compilation time vs. execution time is too high.

11/16

PROJECT COGITO
DELIVERABLE D1.2.2

5 Evaluation process: collecting metrics

The partners EMSE and INRIA have different expertise in this area. EMSE is more familiar with
side channel and cryptography while INRIA is is more familiar in software development and reverse
engineering using side channel. None of these research laboratories have a prior knowledge on the
technology deGoal used to achieve code polymorphism.

5.1 Aims

By stating the goals we define the expected effects of using code polymorphism. The aims of the
case studies are different. The first one is related to the development of cryptographic functions, the
second to a checker algorithm and the last one to a non security oriented function.

The aims of the cryptographic case study is to verify that the EM or power signatures can be miti-
gated using code polymorphism, in particular with the deGoal technology.

For that purpose we need to analyse the power signature of the traces with and without code polymor-
phism, without any other countermeasure. These kind of algorithms are very often the target of side
channel attacks. Numerous techniques are used to eliminate the randomness provided by implemen-
tations and polymorphic code generator could be attacked using statistical analysis. Thus, we will
be able to evaluate the effectiveness of this technology. The experiments must be done on a general
purpose board using the chosen processor to eradicate all side effects. This case study will provide a
qualitative assessment but also a security evaluation of the technology.

The aims of the secure case study is to evaluate the cost for engineer to use the deGoal technology.

For this case study, we want to provide quantitative evaluation for the development process. In
fact, for the adoption of any technology we need to convince management that such a technology
is affordable. For this reason, we have to collect metrics concerning the development for evaluating
the cost and efficiency of deGoal technology. This algorithm rarely used (once per session) is often
the target of attacks and is coded very carefully to avoid any error, side channel leakage or fault attack.

The aims of the non secure algorithm case study is to evaluate the temporal overhead of a dynamic
solution like deGoal versus a static diversification solution.

The main idea within this case study is to investigate the limits of this technology by choosing an
algorithm which is often used, around each 5-10 millisecond, sensible to side channel attacks for
which some static solutions are available. We will focus on the performance of the deGoal tech-
nology and the generated overhead. We define two main hypotheses: this technology improves the
security of smart card products and its is affordable for this application domain.

5.2 Metrics

Distinguish threshold Differential Power Analysis (or Correlation Power Analysis) will be con-
ducted on unprotected and protected implementations. The DPA analysis computes the sample esti-
mation r of Pearson’s correlation coefficient ρ between each trace and the model, for each possible

12/16

PROJECT COGITO
DELIVERABLE D1.2.2

Figure 2: Correlation values and confidence interval for the correct and the best wrong keys on an
unprotected implementation of AES 8-bits. The attack is performed on the key byte 0

hypothetical value of the involved key part. The hypothetical key value that provides the maximum
correlation values among all but the correct key value is called the best wrong key.

We use confidence intervals in order to get a quantitative evaluation of the effectiveness of the
evaluated protection against DPA. Our aim is to determine an interval around the sample estimation r
that contains the correlation coefficient ρ with a probability p [MOP07]. Probability values of 99 %
or higher are typically used when computing a confidence interval. In a DPA scenario, we however
consider that an attacker does not need such a strong guarantee when trying to distinguish the best key
from the correlation traces. Once one or several correlation values distinguish from the others, the
attacker will possibly try the related keys on the device under attack. Hence, similarly to [ABP12],
we use a probability of 80 % to compute the bounds of confidence intervals.

For an attack to succeed, the confidence interval of the correct key and the confidence intervals
of all the other hypothetical keys must separate. We call distinguish threshold the number of traces
required so that the confidence intervals separate. We measure it as follows: the best correlation values
for the correct and the best wrong key are measured from the estimate sample correlations, which
respectively correspond to measurement times tc and tbw. The sample correlation coefficients and
their associated confidence intervals are then computed for the correct and best wrong keys at tc and
tbw as a function of the number of sample measurements used to compute the sample correlation. The
distinguish threshold corresponds to the minimal value for which the higher bound of the confidence
interval for the best wrong key is greater than the lower bound of the confidence interval for the
correct key. Figure 2 presents the results of our DPA attack on an unprotected implementation of a
8-bit AES, where the observation traces are measured from an Electro-Magnetic probe. According
to our evaluation criterion, the correct key distinguishes from all the other hypothetical key values as

13/16

PROJECT COGITO
DELIVERABLE D1.2.2

soon as 35 traces with a confidence probability above 80 %.

5.2.1 Metrics for system performance

Our setup for code polymorphism using deGoal allows to activate several independent sources of
polymorphism [COG14]: random register allocation (RA), use of semantic equivalences (SE), inser-
tion of dummy instructions (DI) and instructions shuffling (IS). Let us denote S the state of polymor-
phic protections activated.

state of polymorphism: S = { /0,RA,RA+SE,RA+SE + IS,RA+SE + IS+DI} (1)

Code generation interval (ω) We assume that, the more frequently a new polymorphic instance
is generated, the higher is the level of security is. Hence we denote ω , the code generation interval,
which is the ratio between the number of times a new polymorphic instance is generated and the
number of executions of all the polymorphic instances (equation 2).

code generation interval: ω =
nb. executions

nb. code generations
(2)

The code generation interval is related to the frequency at which a new polymorphic instance is
generated. In terms of security, the best case is achieved when ω equals to 1, and the worst case is
achieved when ω is close to 0.

Execution time overhead (k) k denotes the execution time overhead (equation 3). It measures the
overhead incurred by the use of code polymorphism as compared to a reference implementation, in
terms of execution time. tre f , tgen and texe respectively denote the execution time of the reference
implementation without polymorphism, the execution time of the polymorphic code generator, and
the execution time of the polymorphic instance. Considering that we have different parameters that
control the level of polymorphism achieved, decribed by S, all the variables k, tre f , tgen and texe actually
depend on S.

execution time overhead: α(S) =
tgen(S)+ω× texe(S)

ω× tre f (S)
(3)

In other words, α measures the impact of code polymorphism on execution time for one execution
of a polymorphic instance as compared to one execution of a reference implementation.

5.3 Metrics of obfuscation by deGoal

The main objective of this case study but also the JVM one is to avoid the reverse by obfuscating
the binary code thanks to the embedded compilette. The obfuscation is not directly linked with
the software complexity in the sens of Software Engineering (MacCabe, Halstead,...). We need to
introduce the concept of resilience which measures how a transformation holds under attack while
using an automatic de-obfuscator. The resilience of a transformation is the result of two measures:

14/16

PROJECT COGITO
DELIVERABLE D1.2.2

• Programmer effort, the amount of time required by the attacker to build its automatic de-
obfuscator which should be able to reduce the complexity induced by the compilette,

• De-obfuscator effort, the execution time and space needed the attack program to reduce the
complexity of the kernel.

We can say that a transformation is potential if it can confuse a human error but it is considered as
resilient if it confuse an automatic tool. For example, some transformation add useless instructions
(move r0, r0) so that it does not change its observable behavior (of course the side channel behavior
is changed), it just increase the effort for a human to read the code. Theses transformation can be
undone with different degree of difficulty using CFG normalization, data flow analysis, etc. The
resilience in one hand defines the quality of the transformation. We have also to pay attention to
the effort needed by the compilette to perform a given transformation (execution cost). For example,
an inter-procedural transformation has a high resilience but also a high execution cost in term space
and/or memory.

A good obfuscator must have a high resilience with a low execution cost. Of course a trade-off is
needed to find the adequate performance of both parameters. In[WW02], the author presents some of
well-known transformations. He classifies them into several categories:

• The easiest way of obfuscation is addition of new instructions, covering the view of the real
control path. These instructions should in some safe way entangled with obfuscated program,
leaving impression of a real program. Any operations can be inserted as far as they do not
change the current machine context. Such a transformation has a hight potentiallity but a low
resilience. The effect of such transformation can be analyzed with any data flow analyzer.

• Computation transformation, the main approach is to hide the control flow, by extending loop
condition which does not change program behaviour, adding dead code controlled with a pred-
icate which value is always the same, remove function call or library call,etc.

• Aggregation transformation break up the computation that logically belongs together or merge
computation that do not. In-lining is one of the most efficient one but also outlining that turns
a sequence of instructions into a subroutine. One of the most efficient transformation against
reverse is probably interleaving code where a code fragment performs different activities con-
trolled by an additional parameter.

• Ordering transformation which randomizes the order in which computation are carried out. This
transformation has a low potentiality but a very important resilience.

• Creation of pointers to data aliases, the elimination of such constructions is a task computation-
ally very complex and thus has a high resilience.

In this use case, we will evaluate the resilience of the deGoal transformations and evaluate them
taking into account the programmer effort and the execution cost.

The analysis of the data depends on the number of collected data. In our case, the number of case
study is not enough to use traditional analysis techniques. We will provide the results for the four
projects without any statistical treatment.

15/16

PROJECT COGITO
DELIVERABLE D1.2.2

6 References

[ABP12] Giovanni Agosta, Alessandro Barenghi, and Gerardo Pelosi. A code morphing methodol-
ogy to automate power analysis countermeasures. In DAC, pages 77–82. ACM, 2012.

[CC11] Liang Cai and Hao Chen. Touchlogger: Inferring keystrokes on touch screen from smart-
phone motion. In HotSec, 2011.

[COG14] COGITO. Specification of the tool, first release. public deliverable D1.1.1, 2014.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power analysis attacks: Revealing
the secrets of smart cards, volume 31. Springer, 2007.

[OSS+] David Oswald, Daehyun Strobel, Falk Schellenberg, Timo Kasper, and Christof Paar.
When reverse-engineering meets side-channel analysis – digital lockpicking in practice.

[VWG06] Dennis Vermoen, Marc Witteman, and Georgi N. Gaydadjiev. Reverse engineering of java
card applets using power analysis. Technical report, WISTP’2007, LNCS 4462, 2006.

[WW02] Gregory Wroblewski and Gregory Wroblewski. General method of program code obfus-
cation, 2002.

16/16

	Executive Summary
	Cryptographic Algorithm: AES
	Description
	Use of code polymorphism

	Secure Algorithm: PIN Code verification
	Motivation
	Description
	Use of code polymorphism

	General Purpose Algorithm: the JVM
	Motivation
	Description
	Use of code polymorphism

	Evaluation process: collecting metrics
	Aims
	Metrics
	Metrics of obfuscation by deGoal

	References

