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Physical attacks

non-invasive /
semi—invasive

=

1 pym

L T —

I‘Illliﬂ. o =

1nvaslve
M&

Iﬁl’iiﬁﬂﬁl’li"

I:I 11 !: IHI 1 T, T M4

T vy

I [
limi am -—--1--—---.-1 - '.fi'

- | W - -

B 1% & A 8 L% BT i I? '
t

wordline 2 bitlinae

backside

4/44



Zoology Cyber attacks
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Zoology Cyber-physical attacks
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Defense
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Defense bricks
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Defense against attackers inside the chips
FIB and Hardware Trojan Horses [BCC"14, NBD*15, CDD"15]
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Defense against attackers inside the chips

FIB and Hardware Trojan Horses

Theory [CG14, CG15]
In general:
¢\ !
( H) —(J K).
If GHT =0,

> z = X using
J=Gt=GT(GG"),

> z = y using
K=H"=HT(HHT)™ L.
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k bits n — k bits
> <€ =

| useful information: x || mask: y

G H

L encoded and masked state: z = G & yH

(optional)

useful information: x || mask: y

v

n bits



AES S-Box

Original Encoded
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Vision of Common Criteria
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Application to cyber-attacks

Identification

DIE Exploitation

— T | %02+%03 ,%

%05,%03,%
%02+%04 ,%
w7, 2

(16 bytes)

13/44



Application to physical-attacks

Identification Exploitation

| Development System
| flchIst\lbance
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Application to physical-attacks

Identification Exploitation

Development System
| for Distubance Crcis i
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How to handle all attacks?

15/44

Countermeasures must be
aware of all attacks

» “Side-Channel Attacks: Ten Years

Side Channal Aftacks Database After Its Publication and the

New|[Publications| | Patents| | stats [ Links| [About Impacts on Cryptographl‘c Module
_— Y — Security Testing' by YongBin

- T * Zhou and DengGuo Feng [ZF05],

» “700+ Attacks Published on
Smart Cards: The Need for a
) ) Systematic Counter Strategy’ by
Mathias Wagner [Wag12].

5-Box for AES (corected)
2009

@ Torres,Phippe Maurine Michel Robert - VLSI-SoC -

Masked Galols Multpllers
CR- 2000

Analysis Resistance for CRT-RSA Impler
x, Chistophe Giraud, Matthieu Rivan, Yar

An Approach Against Side-channal aftacks
g, Weniing Wu Litng Zhang - IACR - 2008




Generic protections against SCA + FIA

Against FIA

» Verification
» Data: with codes

Against SCA

» Randomize

» Data: with masks » Control: with
» Control: with shuffling check-points
» Balance » Tolerate:
» Tolerate: resilience » denial of exploitation

» infective countermeasures
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Example: protection against SCA
Reduce the SNR!

17/44

Observation (X) [A.U.]

No countermeasure

Gaussian noise

/ Maximal leakage

Clock rising edge

Y

Time, t



Example: protection against SCA
Reduce the SNR!

Masking (randomization) Hiding (balancing)

HW(y), for ally ——

X| X | HW(y), for all y
Gaussian noise

Gaussian noise

Observation (X) [1/2A.U.]
Observation (X) [1/2A.U]

Time, t Time, t
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Some definitions

Definition (Signal-to-Noise Ratio [MOP06])

_ Var[E[X|Y]]

Definition (Normalized Inter-Class Variance)
Var[E[X|Y]] 1
NICV = = . 2
E[X] 1+ sig )

Remark
NICV is also named: coefficient of determination, F-test, coefficient of
non-linear correlation, etc.
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Relationship to correlation power attacks [BDGN14]

Proposition

VL:F§; - R,

Var[E[X]Y]]

0 < PIXL(Y)] < Var[X]

= NICV < 1|. (3)

Proof.

It is a direct application of the Cauchy-Schwarz theorem.

There is equality if and only if L is proportional to the actual
leakage. O
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_  [ValEY[X]]
VNICV = | [Pl

. (envelop)
ﬁ o [L(X); YT M\ |p [L(X); Y|

X,
O
X9
N

0%

L LX) =wp(X k) L(X) = wp(S(X © k)
CL(X) = wi(X @ k), k # k* (ghost peaks, printed with dashed lines)
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Probability of success

Definition

Proposition (Characterization [HRG14])

When the keys are equiprobable and the model ¢ o f is known,
maximizing Ps is equivalent to maximizing:

p(x|y(k*)) = pn(x — y(k*)) = [TZ1 pa (xi — yi(K*)).
Corollary

The optimal distinguisher when the noise is Gaussian is:

k* e K > —|lx — o(F(k*,1))|? .
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Success Rate: Goal

» Compute the exact probability of success Pg
» Rigorous mathematical computation of its first order exponent
of success rate:

Ps~1—e ™ for some E . (4)

Definition (First-Order Exponent Equivalence)
A sequence p,, of positive numbers admits a first-order exponent
E,ifenm=En+ % In p,y tends to zero as m — +o00. In this case

we write:

Pm~ e
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Example
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> By Eq. (4), if Ps = 90%, then m = "% -

where E,, does not depend on m

» Doubling the number of measurements

Pg (Proba of success)

m—2m — Ps=99%%.

0.8

0.6

0.4

0.2

1000 2000 3000 4000 5000 6000

m  (Number of measurements)

99%
90%



Result for Gaussian noise & optimal distinguisher (norm-2)

Proposition (CHES '14 poster & INDOCRYPT '15 [GHR15])
When X = aY (k*) + N, with N ~ N(0,02) is the noise:

1
= E(Y (k) — Y(k*))?
80 min B(Y (k) = (k) (5)

where:
» SNR = 0‘—2 and
1-p(Y(k )Y(k*))

> Kkkr = is the confusion coefficient [FLD12].
. . S-box Power 101 . AES S-box
5 5! 5!
= 8 ]
= E=2 E=R
5% 5% [}
8. 8. 8.
c c c
S &~ 5
27 27 27
c " c" c"
8 8 o R —— 8 o R ——
Key HypotheS|s k Key Hypothesis k Key Hypothesis k
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Side-Channel Analysis as a Digital Com. Problem (CHES
'14 [HRG14])

side-channel notations
‘ (o) (e ) [fmare ] [ ose | [ sane | [ ) [ e ] ‘
N T
B
+

D(X,T) == K

~ =
4

source channel decoded
[message] [ el J [mams'J [outputJ [ G Il J [message J

digital communication notations
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Side-Channel Analysis as a Digital Com. Problem (CHES
'14 [HRG14])

side-channel notations
- o ”
secret ‘ sensitive ‘ leakage e loakade arg max key
key variable function distinguisher guess
L
T N T

-‘;;f Digital comr{{luni(}ation {(ramewérk
ST — K

K* =1 R -

Rigorous mathematical analysis

{ 0L J [ encoder ] [ channel J {channe\} [ decoder J [ L JJ
message output message
L

digital communication notations
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Side-Channel Analysis as a Digital Com. Problem (CHES
'14 [HRG14])

side-channel notations
EREEREI RN
T M N () T
i U |
Y(*) V X(*) (* )
o =l BRG . SDED)|— i

M::xJ L eew ) [ ] (] [ [:':::::*:JJ

digital communication notations
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Explicit Derivations for Masking [BGHR14]

Theorem (Second-order HOOD)

If the model (i.e., p'“)) is known to the attacker for all w, then the
second-order HOOD is:

D2,,(x),t0) = arg max py(x[t™))
kek

1
= arg max H Z (m™)) H Pk(X,-(w)It,-(w),m(“’)).
w=0

kek 15 mx)e M)
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Explicit Derivations for Masking [BGHR14]

Theorem (High-order HOOD)

If the model (i.e., $“)) is known to the attacker for all w, then the
high-order HOOD is:

DI+ (x) )y = arg max py(x™)[t*))
ex

opt
—argmaxH Z P( (*))H pr(x w)|tw) m()).

kex i=1m M)
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Explicit Derivations for Masking [BGHR14]

26 /44

Theorem (High-order HOOD — is ad(ditive)

If the model (i.e., $“)) is known to the attacker for all w, then the
high-order HOOD is:

Dg:tl(x(*)’ t(*)) =arg Tcax Pk(x(*)|t(*))

= arg max Zlog Z P(m™)) H pr(x (w|t(w) ).

kex i=1 M)



Taylor expansion of attacks, in the SNR (denoted as 7)
Theorem (Mixed order attack)

Theorem (Two order attack)

Assuming the masking implementation is perfect at order L, the
next order successful attack is the one at order L 4+ 2 which
maximizes LLj». This is equivalent to summing

over all traces and

» maximize the result over the key hypothesis, if L is odd;

> minimize the result over the key hypothesis, if L is even.
27 /44



Taylor expansion of attacks, in the SNR (denoted as 7)
Theorem (Mixed order attack)

Here, k¢ is a cumulant [LB10]! Such notion is related to moments ...

Theorem (Two order attack)

Assuming the masking implementation is perfect at order L, the
next order successful attack is the one at order L 4+ 2 which
maximizes LLj». This is equivalent to summing

over all traces and

» maximize the result over the key hypothesis, if L is odd;

> minimize the result over the key hypothesis, if L is even.
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Concrete results
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Algorithm 1: Shuffled Table re-
computation

input  : Genuine SubBytes
S:F5 = F;

output : Masked SubBytes
S . F; — T3

m<+x FS, m" < F3 // Draw of
random input and output masks
@ «nr F3 —TF5 // Draw of random
permutation of Fj
for w e {0,1,...,2" — 1} do
// S-Box masking
z + p(w) @ m // Masked
input
' « Slp(w)]® m' // Masked
output
S'[z] = Z' // Creating the
masked S-Box entry
end

return S’

Sensitive var:

Line in Alg. 1:

+ comparison with [PRB09, BGNT15]

state-of-the-art bivariate 2nd-order attack

Attack on shuffled table

recomputation: medium noise, 0 =7 :

Success rate

1 "

9 4 7

0r [ VA

sl /Y

os| 1/,

N7

sl /4

ol L 20-CPA ——— ||
v/ A, |
. LLy

0 50000 100000

Number of traces

150000 200000



Outline

From SmartCards to System-on-Chips
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SmartCard to System on- Chlp
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Discussion about pros/cons of security of SC vs SoC
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Feature Secure Secure
SmartCard | System-on-Chip
Size small large
Techno 90 nm < 28 nm
Ports <8 > 500
API ISO 7816 Proprietary
Red/Black Yes No




Discussion about pros/cons of security of SC vs SoC

Against invasive attacks / bad
Feature Secure Secure
SmartCard | System-on-Chip
Size small
Techno 90 nm
Ports <8
API ISO 7816 Proprietary

Red/Black Yes
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Discussion about pros/cons of security of SC vs SoC

Against fault injection attacks good / bad
Feature Secure Secure
SmartCard | System-on-Chip
Size small large
Techno 90 nm < 28 nm
Ports <8 > 500
API ISO 7816 Proprietary

Red/Black Yes No
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Discussion about pros/cons of security of SC vs SoC

Against side-channel attacks good / bad
Feature Secure Secure
SmartCard | System-on-Chip
Size small large
Techno 90 nm < 28 nm
Ports <8 > 500
API ISO 7816 Proprietary

Red/Black Yes No
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Outline

Conclusions
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Evaluation: three philosophies for an effective defense

» 1. Defense in depth:
» Multiple layers

» 2. Security by obscurity:
» Customize the protections

» 3. Software patches:
» Enrich the API
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Opportunities for SoCs

> More defense in depth:
» System-level protections

» Powerful CPUs:
» Crazy countermeasures become realistic!

» Hardware countermeasures can be unleashed!
» Do not forget hardware is the root of trust!
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Standardization

CC [Cri13]

B . .
“4Common Criteria

Supporting Document
Mandatory Technical Document

Application of Attack Potential to
Smartcards

May 2013

Version 2.9

CCDB-2013-05-002
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International

Iso Organization for

Standardization

ISO [Eas12]

Cryptographic Module Testing — ISO Standards

19790:2006 24759:2008

19790:2012"
Security
requirements for
eryptographic
modules

24759:2014"

Test requirements
for

eryptographic
modules

Competence.
requirements for

Cryptographi
thms

apparatus
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