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I. Introduction 

!  Contexte et motivations – Sécurité matérielle  
"  Circuits sécurisés 
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Defense against attackers inside the chips
FIB and Hardware Trojan Horses [BCC+14, NBD+15, CDD+15]
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Defense against attackers inside the chips
FIB and Hardware Trojan Horses

Theory [CG14, CG15]

In general:(
G
H

)−1

=
(

J K
)
.

If GHT = 0,

I z ⇒ x using
J = G + = G T(GG T)−1,

I z ⇒ y using
K = H+ = HT(HHT)−1.

n bits

encoded and masked state: z = xG ⊕ yH

n − k bitsk bits

useful information: x mask: y

HG

K

J

(optional)

useful information: x mask: y
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AES S-Box
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Application to cyber-attacks
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Application to physical-attacks
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How to handle all attacks?

Countermeasures must be
aware of all attacks

I “Side-Channel Attacks: Ten Years
After Its Publication and the
Impacts on Cryptographic Module
Security Testing” by YongBin
Zhou and DengGuo Feng [ZF05],

I “700+ Attacks Published on
Smart Cards: The Need for a
Systematic Counter Strategy” by
Mathias Wagner [Wag12].
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Generic protections against SCA + FIA

Against SCA

I Randomize
I Data: with masks
I Control: with shuffling

I Balance

I Tolerate: resilience

Against FIA

I Verification
I Data: with codes
I Control: with

check-points

I Tolerate:
I denial of exploitation
I infective countermeasures
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Example: protection against SCA
Reduce the SNR!
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Example: protection against SCA
Reduce the SNR!

Masking (randomization)
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Some definitions

Definition (Signal-to-Noise Ratio [MOP06])

SNR =
Var[E[X |Y ]]

E[Var[X |Y ]]
. (1)

Definition (Normalized Inter-Class Variance)

NICV =
Var[E[X |Y ]]

E[X ]
=

1

1 + 1
SNR

. (2)

Remark
NICV is also named: coefficient of determination, F-test, coefficient of
non-linear correlation, etc.
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Relationship to correlation power attacks [BDGN14]

Proposition

∀L : Fn
2 → R ,

0 ≤ ρ2 [X ; L(Y )] ≤ Var[E[X |Y ]]

Var[X ]
= NICV ≤ 1 . (3)

Proof.
It is a direct application of the Cauchy-Schwarz theorem.
There is equality if and only if L is proportional to the actual
leakage.
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Probability of success

Definition

PS = P(K̂ = K ?) .

Proposition (Characterization [HRG14])

When the keys are equiprobable and the model φ ◦ f is known,
maximizing PS is equivalent to maximizing:
p(x|y(k?)) = pN(x− y(k?)) =

∏m
i=1 pNi

(xi − yi (k?)).

Corollary

The optimal distinguisher when the noise is Gaussian is:

k? ∈ K 7→ −‖x− φ(f (k?, t))‖2 .
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Success Rate: Goal

I Compute the exact probability of success PS

I Rigorous mathematical computation of its first order exponent
of success rate:

PS ≈ 1− e−mE for some E . (4)

Definition (First-Order Exponent Equivalence)

A sequence pm of positive numbers admits a first-order exponent
Em if εm = Em + 1

m ln pm tends to zero as m→ +∞. In this case
we write:

pm ≈ e−mEm .
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Example where Em does not depend on m

I By Eq. (4), if PS = 90%, then m = ln(10)
E ;

I Doubling the number of measurements
m −→ 2m =⇒ PS = 99%.
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Result for Gaussian noise & optimal distinguisher (norm-2)

Proposition (CHES ’14 poster & INDOCRYPT ’15 [GHR15])

When X = αY (k?) + N, with N ∼ N (0, σ2) is the noise:

E =
1

8σ2
min
k 6=k?

E(Y (k)− Y (k?))2 (5)

=
1

2
SNR min

k 6=k?
κk,k? , (6)

where:

I SNR = α2

σ2 , and

I κk,k? = 1−ρ(Y (k),Y (k?))
2 is the confusion coefficient [FLD12].
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Side-Channel Analysis as a Digital Com. Problem (CHES
’14 [HRG14])
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Side-Channel Analysis as a Digital Com. Problem (CHES
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Side-Channel Analysis as a Digital Com. Problem (CHES
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Explicit Derivations for Masking [BGHR14]

Theorem (Second-order HOOD)

If the model (i.e., φ(ω)) is known to the attacker for all ω, then the
second-order HOOD is:

D2
opt(x(?), t(?)) = arg max

k∈K
pk(x(?)|t(?))

= arg max
k∈K

q∏
i=1

∑
m(?)∈M(?)

P(m(?))
1∏

ω=0

pk(x
(ω)
i |t

(ω)
i ,m(ω)).
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Explicit Derivations for Masking [BGHR14]

Theorem (High-order HOOD)

If the model (i.e., φ(ω)) is known to the attacker for all ω, then the
high-order HOOD is:

Dd+1
opt (x(?), t(?)) = arg max

k∈K
pk(x(?)|t(?))

= arg max
k∈K

q∏
i=1

∑
m(?)∈M(?)

P(m(?))
d∏

ω=0

pk(x
(ω)
i |t

(ω)
i ,m(ω)).
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Explicit Derivations for Masking [BGHR14]

Theorem (High-order HOOD — is additive)

If the model (i.e., φ(ω)) is known to the attacker for all ω, then the
high-order HOOD is:

Dd+1
opt (x(?), t(?)) = arg max

k∈K
pk(x(?)|t(?))

= arg max
k∈K

q∑
i=1

log
∑

m(?)∈M(?)

P(m(?))
d∏

ω=0

pk(x
(ω)
i |t

(ω)
i ,m(ω)).
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Taylor expansion of attacks, in the SNR (denoted as γ)

Theorem (Mixed order attack)

logE exp
(
−γ‖x − y(t, k ,M)‖2

)
=

+∞∑
`=1

κ`
`!

(−γ)` .

� Here, κ` is a cumulant [LB10]! Such notion is related to moments µ`...

Theorem (Two order attack)

Assuming the masking implementation is perfect at order L, the
next order successful attack is the one at order L + 2 which
maximizes LLL+2. This is equivalent to summing

µL+1(1 + γµ1)− γ µL+2

L + 2

over all traces and

I maximize the result over the key hypothesis, if L is odd;

I minimize the result over the key hypothesis, if L is even.
27/44



Taylor expansion of attacks, in the SNR (denoted as γ)

Theorem (Mixed order attack)

logE exp
(
−γ‖x − y(t, k ,M)‖2

)
=

+∞∑
`=1

κ`
`!

(−γ)` .

� Here, κ` is a cumulant [LB10]! Such notion is related to moments µ`...

Theorem (Two order attack)

Assuming the masking implementation is perfect at order L, the
next order successful attack is the one at order L + 2 which
maximizes LLL+2. This is equivalent to summing

µL+1(1 + γµ1)− γ µL+2

L + 2

over all traces and

I maximize the result over the key hypothesis, if L is odd;

I minimize the result over the key hypothesis, if L is even.
27/44



Concrete results + comparison with [PRB09, BGNT15]

Algorithm 1: Shuffled Table re-
computation
input : Genuine SubBytes

S : Fn
2 → Fn

2

output : Masked SubBytes
S ′ : Fn

2 → Fn
2

1 m←R Fn
2, m

′ ←R Fn
2 // Draw of

random input and output masks

2 ϕ←R Fn
2 → Fn

2 // Draw of random

permutation of Fn
2

3 for ω ∈ {0, 1, . . . , 2n − 1} do
// S-Box masking

4 z ← ϕ(ω)⊕m // Masked

input

5 z ′ ← S [ϕ(ω)]⊕m′ // Masked

output

6 S ′[z] = z ′ // Creating the

masked S-Box entry

7 end

8 return S’
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Discussion about pros/cons of security of SC vs SoC
Against invasive attacks

Feature
Secure Secure

SmartCard System-on-Chip

Size small large
Techno 90 nm < 28 nm
Ports < 8 > 500
API ISO 7816 Proprietary

Red/Black Yes No
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Discussion about pros/cons of security of SC vs SoC
Against invasive attacks good / bad

Feature
Secure Secure

SmartCard System-on-Chip

Size small large
Techno 90 nm < 28 nm
Ports < 8 > 500
API ISO 7816 Proprietary

Red/Black Yes No
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Discussion about pros/cons of security of SC vs SoC
Against fault injection attacks good / bad

Feature
Secure Secure

SmartCard System-on-Chip

Size small large
Techno 90 nm < 28 nm
Ports < 8 > 500
API ISO 7816 Proprietary

Red/Black Yes No
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Discussion about pros/cons of security of SC vs SoC
Against side-channel attacks good / bad

Feature
Secure Secure

SmartCard System-on-Chip

Size small large
Techno 90 nm < 28 nm
Ports < 8 > 500
API ISO 7816 Proprietary

Red/Black Yes No
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Evaluation: three philosophies for an effective defense

I 1. Defense in depth:
I Multiple layers

I 2. Security by obscurity:
I Customize the protections

I 3. Software patches:
I Enrich the API
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Opportunities for SoCs

I More defense in depth:
I System-level protections

I Powerful CPUs:
I Crazy countermeasures become realistic!

I Hardware countermeasures can be unleashed!
I Do not forget hardware is the root of trust!
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