Sécurité des systèmes embarqués contre les [phases d'identification et d'exploitation](http://www.cogito-anr.fr/workshop-invited-talk.html)

> Sylvain GUILLEY sylvain.guilley@secure-ic.com

- \Box Contexte et motivations Sécurité matérielle
- " Circuits sécurisés

Outline

[Evolution of attacks and defense techniques](#page-3-0) **[Attacks](#page-4-0)** [Defense](#page-7-0)

[Analysis of attack / defense](#page-20-0) [Generic protections](#page-25-0) [Role of SNR in side-channel attacks](#page-27-0) [Link between SNR and probability of success](#page-35-0)

[From SmartCards to System-on-Chips](#page-45-0)

[Conclusions](#page-54-0)

Outline

[Evolution of attacks and defense techniques](#page-3-0) **[Attacks](#page-4-0)** [Defense](#page-7-0)

[Analysis of attack / defense](#page-20-0)

[From SmartCards to System-on-Chips](#page-45-0)

[Conclusions](#page-54-0)

Physical attacks

Zoology Cyber attacks

Zoology Cyber-physical attacks

STATE-OF-THE-ART
COUNTER-MEASURES

Secure IP cores that leverage patents / \bullet know-how in security

- \triangleright Tunable Cryptography
- True Random Number Generator \prec
- Physically Unclonable Function ⋗
- **Digital Sensor** ⋗
- > Active Shield
- \triangleright Secure Clock
- \triangleright Scrambled Bus
- \triangleright Secure JTAG
- CyberCPU \blacktriangleright

Secure IP cores that leverage patents / \bullet know-how in security

- Tunable Cryptography \checkmark
- \triangleright True Random Number Generator
- **Physically Unclonable Function** ⋗
- **Digital Sensor** ⋗
- **Active Shield** \checkmark
- Secure Clock
- Scrambled Bus \checkmark
- Secure JTAG ⋗
- CyberCPU ↘

Details:

- Security / perf
- tradeoffs, with
- formal guarantees

Secure IP cores that leverage patents / \bullet know-how in security

- Tunable Cryptography \blacktriangleright
- True Random Number Generator \checkmark
- Physically Unclonable Function ⋗
- **Digital Sensor** \blacktriangleright
- **Active Shield** \checkmark
- \triangleright Secure Clock
- Scrambled Bus \prec
- Secure JTAG \geq
- CyberCPU \blacktriangleright

Details:

- Provably secure
- key generation
- resistant to
- harmonic fault
- injection

STATE-OF-THE-ART
COUNTER-MEASURES **ACTIVE**

Secure IP cores that leverage patents / \bullet know-how in security

- Tunable Cryptography \blacktriangleright
- True Random Number Generator \blacktriangleright
- (Physically Unclonable Function) \checkmark
- **Digital Sensor** \blacktriangleright
- **Active Shield** \blacktriangleright
- Secure Clock
- Scrambled Bus \checkmark
- Secure JTAG ⋗
- CyberCPU \blacktriangleright

Details:

- Non-stored keys,
- with large
- reliability and
- aging resistance

Secure IP cores that leverage patents / \bullet know-how in security

- Tunable Cryptography \blacktriangleright
- True Random Number Generator \blacktriangleright
- **Physically Unclonable Function** \blacktriangleright
- Digital Sensor \checkmark
- **Active Shield** \checkmark
- Secure Clock
- Scrambled Bus \checkmark
- Secure JTAG ⋗
- CyberCPU \blacktriangleright

Details:

- All-in-one
- 360◦ protection
- against fault
- injection attacks

STATE-OF-THE-ART
COUNTER-MEASURES **ACTIVE** SHIFID

BUS

Secure IP cores that leverage patents / \bullet know-how in security

- Tunable Cryptography \blacktriangleright
- True Random Number Generator \blacktriangleright
- **Physically Unclonable Function** \blacktriangleright
- **Digital Sensor** \blacktriangleright
- **Active Shield** \checkmark
- Δ Secure Clock
- Scrambled Bus \checkmark
- Secure JTAG ⋗
- CyberCPU \blacktriangleright

Details:

Cryptographic protection against FIB and probing invasive attacks

STATE-OF-THE-ART
COUNTER-MEASURES

Secure IP cores that leverage patents / \bullet know-how in security

- Tunable Cryptography \blacktriangleright
- True Random Number Generator \blacktriangleright
- **Physically Unclonable Function** ⋗
- **Digital Sensor** \triangleright
- **Active Shield** \blacktriangleright
- \blacktriangle Secure Clock
- **Scrambled Bus** \prec
- Secure JTAG
- CyberCPU \blacktriangleright

Details:

Various levels of user programmable jittered clock, against fault and side-channel attacks

Secure IP cores that leverage patents / \bullet know-how in security

- Tunable Cryptography \blacktriangleright
- True Random Number Generator \blacktriangleright
- **Physically Unclonable Function** ⋗
- **Digital Sensor** \blacktriangleright
- **Active Shield** \blacktriangleright
- Secure Clock
- (Scrambled Bus) \blacktriangle
- Secure JTAG \prec
- CyberCPU \blacktriangleright

Details:

Crypto-grade combinational (< 1 clock latency) bus and memory encryption & decryption

STATE-OF-THE-ART
COUNTER-MEASURES

Secure IP cores that leverage patents / \bullet know-how in security

- Tunable Cryptography \blacktriangleright
- True Random Number Generator \blacktriangleright
- **Physically Unclonable Function** ⋗
- **Digital Sensor** ⋗
- **Active Shield** \checkmark
- Secure Clock
- Scrambled Bus \checkmark
- Secure JTAG \blacktriangleright
- CyberCPU \blacktriangleright

Details:

Tamper-proof circuit debugging interface, with cryptographic authentication

STATE-OF-THE-ART
COUNTER-MEASURES

Secure IP cores that leverage patents / \bullet know-how in security

- Tunable Cryptography \blacktriangleright
- True Random Number Generator \prec
- **Physically Unclonable Function** ⋗
- **Digital Sensor** ⋗
- **Active Shield** \checkmark
- Δ Secure Clock
- Scrambled Bus \checkmark
- Secure JTAG ⋗
- CyberCPU \blacktriangleright

Details:

Real-time hardware-level detection of data & instruction corruption

Defense against attackers inside the chips FIB and Hardware Trojan Horses $[BCC^+14, NBD^+15, CDD^+15]$ $[BCC^+14, NBD^+15, CDD^+15]$

Defense against attackers inside the chips

FIB and Hardware Trojan Horses

Theory [\[CG14,](#page-60-1) [CG15\]](#page-61-0)

In general:

$$
\left(\begin{array}{c} G \\ H \end{array}\right)^{-1} = \left(\begin{array}{cc} J & K \end{array}\right) \, .
$$

If $GH^{\mathsf{T}}=0$.

 \blacktriangleright z \Rightarrow x using $J=G^+=G^\mathsf{T}(GG^\mathsf{T})^{-1},$

$$
\begin{aligned} \triangleright z &\Rightarrow y \text{ using} \\ K &= H^+ = H^{\mathsf{T}} (H H^{\mathsf{T}})^{-1} . \end{aligned}
$$

AES S-Box

爴

Original Encoded

Outline

[Evolution of attacks and defense techniques](#page-3-0)

[Analysis of attack / defense](#page-20-0) [Generic protections](#page-25-0) [Role of SNR in side-channel attacks](#page-27-0) [Link between SNR and probability of success](#page-35-0)

[From SmartCards to System-on-Chips](#page-45-0)

[Conclusions](#page-54-0)

Vision of Common Criteria

Application to cyber-attacks

Identification

Exploitation

(16 bytes)

Application to physical-attacks

Identification

Exploitation

Application to physical-attacks

Identification **Exploitation**

How to handle all attacks?

Countermeasures must be aware of all attacks

- ▶ "Side-Channel Attacks: Ten Years After Its Publication and the Impacts on Cryptographic Module Security Testing" by YongBin Zhou and DengGuo Feng [\[ZF05\]](#page-63-1),
- \blacktriangleright "700 + Attacks Published on Smart Cards: The Need for a Systematic Counter Strategy" by Mathias Wagner [\[Wag12\]](#page-63-2).

Generic protections against $SCA + FIA$

Against SCA

- \blacktriangleright Randomize
	- \blacktriangleright Data: with masks
	- \triangleright Control: with shuffling
- \blacktriangleright Balance
- **Tolerate:** resilience

Against FIA

- \blacktriangleright Verification
	- \blacktriangleright Data: with codes
	- \triangleright Control: with check-points
- \blacktriangleright Tolerate:
	- \blacktriangleright denial of exploitation
	- \blacktriangleright infective countermeasures

Example: protection against SCA Reduce the SNR!

Time, t

Example: protection against SCA Reduce the SNR!

Hiding (balancing)

Some definitions

Definition (Signal-to-Noise Ratio [\[MOP06\]](#page-62-0))

$$
SNR = \frac{\text{Var}[\mathbb{E}[X|Y]]}{\mathbb{E}[\text{Var}[X|Y]]} \tag{1}
$$

Definition (Normalized Inter-Class Variance)

$$
NICV = \frac{\text{Var}[\mathbb{E}[X|Y]]}{\mathbb{E}[X]} = \frac{1}{1 + \frac{1}{SNR}} \tag{2}
$$

Remark

NICV is also named: coefficient of determination, F-test, coefficient of non-linear correlation, etc.

Relationship to correlation power attacks [\[BDGN14\]](#page-59-1)

Proposition

$$
\forall L: \mathbb{F}_2^n \to \mathbb{R} ,
$$

$$
0 \leq \rho^2 [X; L(Y)] \leq \frac{\text{Var}[\mathbb{E}[X|Y]]}{\text{Var}[X]} = NICV \leq 1 .
$$
 (3)

Proof.

It is a direct application of the Cauchy-Schwarz theorem. There is equality if and only if L is proportional to the actual leakage.

Probability of success

Definition

$$
\mathbb{P}_S=\mathbb{P}(\hat{K}=K^{\star})\ .
$$

Proposition (Characterization [\[HRG14\]](#page-62-1))

When the keys are equiprobable and the model $\phi \circ f$ is known, maximizing \mathbb{P}_S is equivalent to maximizing: $p(\mathbf{x}|\mathbf{y}(k^*)) = p_{\mathsf{N}}(\mathbf{x} - \mathbf{y}(k^*)) = \prod_{i=1}^m p_{N_i}(x_i - y_i(k^*)).$

Corollary

The optimal distinguisher when the noise is Gaussian is:

$$
k^{\star} \in \mathcal{K} \qquad \mapsto \qquad -\|\mathbf{x}-\phi(f(k^{\star},\mathbf{t}))\|^2 \enspace .
$$

Success Rate: Goal

- \triangleright Compute the exact probability of success \mathbb{P}_{S}
- \triangleright Rigorous mathematical computation of its first order exponent of success rate:

$$
\mathbb{P}_S \approx 1 - e^{-mE} \quad \text{for some } E \quad . \tag{4}
$$

Definition (First-Order Exponent Equivalence)

A sequence p_m of positive numbers admits a first-order exponent E_m if $\epsilon_m = E_m + \frac{1}{n}$ $\frac{1}{m}$ In p_m tends to zero as $m \to +\infty$. In this case we write:

$$
p_m \approx e^{-mE_m}.
$$

Example where E_m does not depend on m

$$
\blacktriangleright \text{ By Eq. (4), if } \mathbb{P}_S = 90\%, \text{ then } m = \frac{\ln(10)}{E} ;
$$

 \triangleright Doubling the number of measurements $m \longrightarrow 2m \implies \mathbb{P}_S = 99\%.$

Result for Gaussian noise & optimal distinguisher (norm-2) Proposition (CHES '14 poster & INDOCRYPT '15 [\[GHR15\]](#page-62-2)) When $X = \alpha Y(k^*) + N$, with $N \sim \mathcal{N}(0, \sigma^2)$ is the noise:

$$
E = \frac{1}{8\sigma^2} \min_{k \neq k^*} \mathbb{E}(Y(k) - Y(k^*))^2
$$

=
$$
\frac{1}{2} SNR \min_{k \neq k^*} \kappa_{k,k^*} ,
$$
 (6)

where:

Side-Channel Analysis as a Digital Com. Problem (CHES '14 [\[HRG14\]](#page-62-1))

Side-Channel Analysis as a Digital Com. Problem (CHES '14 [\[HRG14\]](#page-62-1))

Side-Channel Analysis as a Digital Com. Problem (CHES '14 [\[HRG14\]](#page-62-1))

Explicit Derivations for Masking [\[BGHR14\]](#page-59-2)

Theorem (Second-order HOOD)

If the model (i.e., $\phi^{(\omega)}$) is known to the attacker for all ω , then the second-order HOOD is:

$$
\mathcal{D}_{opt}^2(\mathbf{x}^{(\star)}, \mathbf{t}^{(\star)}) = \underset{k \in \mathcal{K}}{\arg \max} \ p_k(\mathbf{x}^{(\star)} | \mathbf{t}^{(\star)})
$$
\n
$$
= \underset{k \in \mathcal{K}}{\arg \max} \ \prod_{i=1}^q \sum_{m^{(\star)} \in \mathcal{M}^{(\star)}} \mathbb{P}(m^{(\star)}) \prod_{\omega=0}^1 \ p_k(x_i^{(\omega)} | t_i^{(\omega)}, m^{(\omega)}).
$$

Explicit Derivations for Masking [\[BGHR14\]](#page-59-2)

Theorem (High-order HOOD)

If the model (i.e., $\phi^{(\omega)}$) is known to the attacker for all ω , then the high-order HOOD is:

$$
\mathcal{D}_{opt}^{d+1}(\mathbf{x}^{(\star)}, \mathbf{t}^{(\star)}) = \underset{k \in \mathcal{K}}{\arg \max} \ p_k(\mathbf{x}^{(\star)} | \mathbf{t}^{(\star)})
$$
\n
$$
= \underset{k \in \mathcal{K}}{\arg \max} \ \prod_{i=1}^{q} \sum_{m^{(\star)} \in \mathcal{M}^{(\star)}} \mathbb{P}(m^{(\star)}) \prod_{\omega=0}^{d} \ p_k(x_i^{(\omega)} | t_i^{(\omega)}, m^{(\omega)}).
$$

Explicit Derivations for Masking [\[BGHR14\]](#page-59-2)

Theorem (High-order HOOD — is additive)

If the model (i.e., $\phi^{(\omega)}$) is known to the attacker for all ω , then the high-order HOOD is:

$$
\mathcal{D}_{opt}^{d+1}(\mathbf{x}^{(\star)}, \mathbf{t}^{(\star)}) = \underset{k \in \mathcal{K}}{\arg \max} \ p_k(\mathbf{x}^{(\star)} | \mathbf{t}^{(\star)})
$$
\n
$$
= \underset{k \in \mathcal{K}}{\arg \max} \ \sum_{i=1}^{q} \log \sum_{m^{(\star)} \in \mathcal{M}^{(\star)}} \mathbb{P}(m^{(\star)}) \prod_{\omega=0}^{d} \ p_k(x_i^{(\omega)} | t_i^{(\omega)}, m^{(\omega)}).
$$

Taylor expansion of attacks, in the SNR (denoted as γ) Theorem (Mixed order attack)

$$
\log \mathbb{E} \exp(-\gamma \|x - y(t, k, M)\|^2) = \sum_{\ell=1}^{+\infty} \frac{\kappa_{\ell}}{\ell!} (-\gamma)^{\ell}
$$

.

Theorem (Two order attack)

Assuming the masking implementation is perfect at order L, the next order successful attack is the one at order $L + 2$ which maximizes LL_{1+2} . This is equivalent to summing

over all traces and

- \triangleright maximize the result over the key hypothesis, if L is odd;
- minimize the result over the key hypothesis, if L is even.

Taylor expansion of attacks, in the SNR (denoted as γ) Theorem (Mixed order attack)

$$
\log \mathbb{E} \exp(-\gamma \|x - y(t, k, M)\|^2) = \sum_{\ell=1}^{+\infty} \frac{\kappa_{\ell}}{\ell!} (-\gamma)^{\ell}.
$$

 $_{\circ}$ Here, κ_{ℓ} is a cumulant [\[LB10\]](#page-62-3)! Such notion is related to moments $\mu_{\ell}...$ Theorem (Two order attack)

Assuming the masking implementation is perfect at order L, the next order successful attack is the one at order $L + 2$ which maximizes LL_{1+2} . This is equivalent to summing

over all traces and

- \triangleright maximize the result over the key hypothesis, if L is odd;
- minimize the result over the key hypothesis, if L is even.

Concrete results $+$ comparison with [\[PRB09,](#page-63-3) [BGNT15\]](#page-60-2)

Algorithm 1: Shuffled Table recomputation

- input : Genuine SubBytes $S: \mathbb{F}_2^n \to \mathbb{F}_2^n$ output : Masked SubBytes
	- $S':\mathbb{F}_2^n\to\mathbb{F}_2^n$
- $1 \quad m \leftarrow_{\mathcal{R}} \mathbb{F}_2^n, \ m' \leftarrow_{\mathcal{R}} \mathbb{F}_2^n$ // Draw of random input and output masks
- $\begin{array}{l} \texttt{2}\ \varphi\leftarrow_\mathcal{R} \mathbb{F}_2^n\rightarrow\mathbb{F}_2^n\ \texttt{\textit{7}}\ \texttt{\textit{Draw of random}} \end{array}$ permutation of \mathbb{F}_2^n

$$
3 \text{ for } \omega \in \{0, 1, \ldots, 2^n - 1\} \text{ do}
$$

// S-Box masking

- 4 $z \leftarrow \varphi(\omega) \oplus m \text{ // Masked}$ input
- $\mathsf{s} \quad \quad \mathsf{z}' \leftarrow \mathcal{S}[\varphi(\omega)] \oplus \mathsf{m}'$ // <code>Masked</code> output
- 6 $S'[z] = z'$ // Creating the masked S-Box entry

⁷ end

 8 return S'

[Evolution of attacks and defense techniques](#page-3-0)

[Analysis of attack / defense](#page-20-0)

[From SmartCards to System-on-Chips](#page-45-0)

[Conclusions](#page-54-0)

Discussion about pros/cons of security of SC vs SoC

Discussion about pros/cons of security of SC vs SoC Against invasive attacks and good / bad

Discussion about pros/cons of security of SC vs SoC Against fault injection attacks good / bad

Discussion about pros/cons of security of SC vs SoC Against side-channel attacks good / bad

Outline

[Evolution of attacks and defense techniques](#page-3-0)

[Analysis of attack / defense](#page-20-0)

[From SmartCards to System-on-Chips](#page-45-0)

[Conclusions](#page-54-0)

Evaluation: three philosophies for an effective defense

\blacktriangleright 1. Defense in depth:

 \blacktriangleright Multiple layers

\blacktriangleright 2. Security by obscurity:

- \blacktriangleright Customize the protections
- \triangleright 3. Software patches:
	- \blacktriangleright Enrich the API

Opportunities for SoCs

- \blacktriangleright More defense in depth:
	- \triangleright System-level protections
- \blacktriangleright Powerful CPUs:
	- \triangleright Crazy countermeasures become realistic!
- \blacktriangleright Hardware countermeasures can be unleashed!
	- \triangleright Do not forget hardware is the root of trust!

Standardization

CC [\[Cri13\]](#page-61-2)

Supporting Document Mandatory Technical Document

Application of Attack Potential to **Smartcards**

May 2013

Version 2.9

CCDB-2013-05-002

ISO [\[Eas12\]](#page-61-3)

Cryptographic Module Testing – ISO Standards

Sécurité des systèmes embarqués contre les [phases d'identification et d'exploitation](http://www.cogito-anr.fr/workshop-invited-talk.html)

> Sylvain GUILLEY sylvain.guilley@secure-ic.com

[BCC⁺14] Julien Bringer, Claude Carlet, Hervé Chabanne, Sylvain Guilley, and Houssem Maghrebi. Orthogonal Direct Sum Masking – A Smartcard Friendly Computation Paradigm in a Code, with Builtin Protection against Side-Channel and Fault Attacks. In WISTP, volume 8501 of LNCS, pages 40–56. Springer, June 2014.

Heraklion, Greece.

[BDGN14] Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, and Zakaria Najm. Side-channel Leakage and Trace Compression Using Normalized Inter-class Variance.

> In Proceedings of the Third Workshop on Hardware and Architectural Support for Security and Privacy, HASP '14, pages 7:1–7:9, New York, NY, USA, 2014. ACM.

[BGHR14] Nicolas Bruneau, Sylvain Guilley, Annelie Heuser, and Olivier Rioul. Masks Will Fall Off – Higher-Order Optimal Distinguishers. In Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology – ASIACRYPT 2014 - 20th International Conference on the Theory and Application of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-11, 2014, Proceedings, Part II, volume 8874 of Lecture Notes in Computer Science, pages 344–365. Springer, 2014.

[BGNT15] Nicolas Bruneau, Sylvain Guilley, Zakaria Najm, and Yannick Teglia. Multi-variate high-order attacks of shuffled tables recomputation. In Tim Güneysu and Helena Handschuh, editors, Cryptographic Hardware and Embedded Systems - CHES 2015 - 17th International Workshop, Saint-Malo, France, September 13-16, 2015, Proceedings, volume 9293 of Lecture Notes in Computer Science, pages 475–494. Springer, 2015.

[BR14] Lejla Batina and Matthew Robshaw, editors. Cryptographic Hardware and Embedded Systems - CHES 2014 - 16th International Workshop, Busan, South Korea, September 23-26, 2014. Proceedings, volume 8731 of Lecture Notes in Computer Science. Springer, 2014.

[CDD+15] Claude Carlet, Abderrahman Daif, Jean-Luc Danger, Sylvain Guilley, Zakaria Najm, Xuan Thuy Ngo, and Cédric Tavernier. Optimized Linear Complementary Codes Implementation for Hardware Trojan Prevention.

> In 22nd European Conference on Circuit Theory and Design, ECCTD2015, pages Trondheim, Norway, August 24-26 2015.

[CG14] Claude Carlet and Sylvain Guilley.

Complementary Dual Codes for Counter-measures to Side-Channel Attacks.

In Springer, editor, ICMCTA, 4th International Castle Meeting on Coding Theory and Applications, CIM-MS, September 15-18 2014. Palmela, Portugal. URL: <http://icmcta.web.ua.pt>. (article #9). ISBN 978-3-319-17295-8. <http://www.springer.com/978-3-319-17295-8>.

[CG15] Claude Carlet and Sylvain Guilley. Complementary Dual Codes for Counter-measures to Side-Channel Attacks.

Advances in Mathematics and Communications (AMC), 2015.

[Cri13] Common Criteria.

Application of Attack Potential to Smartcards, Mandatory Technical Document, Version 2.9, Revision 2, CCDB-2013-05-002, May 2013. [http://www.commoncriteriaportal.org/files/supdocs/](http://www.commoncriteriaportal.org/files/supdocs/CCDB-2013-05-002.pdf) [CCDB-2013-05-002.pdf](http://www.commoncriteriaportal.org/files/supdocs/CCDB-2013-05-002.pdf).

[Eas12] Randall J. Easter.

Text for ISO/IEC 1st WD 17825 – Information technology – Security techniques – Non-invasive attack mitigation test metrics for cryptographic modules, January 19 2012.

Prepared within ISO/IEC JTC 1/SC 27/WG 3. [\(Online\)](http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=60612).

[FLD12] Yunsi Fei, Qiasi Luo, and A. Adam Ding. A Statistical Model for DPA with Novel Algorithmic Confusion Analysis. In Emmanuel Prouff and Patrick Schaumont, editors, CHES, volume 7428 of LNCS, pages 233–250. Springer, 2012.

[GHR15] Sylvain Guilley, Annelie Heuser, and Olivier Rioul. A Key to Success - Success Exponents for Side-Channel Distinguishers. In Alex Biryukov and Vipul Goyal, editors, Progress in Cryptology - INDOCRYPT 2015 - 16th International Conference on Cryptology in India, Bangalore, India, December 6-9, 2015, Proceedings, volume 9462 of Lecture Notes in Computer Science, pages 270–290. Springer, 2015.

[HRG14] Annelie Heuser, Olivier Rioul, and Sylvain Guilley. Good Is Not Good Enough - Deriving Optimal Distinguishers from Communication Theory. In Batina and Robshaw [\[BR14\]](#page-60-3), pages 55–74.

[LB10] Thanh-Ha Le and Maël Berthier. Mutual Information Analysis under the View of Higher-Order Statistics. In Isao Echizen, Noboru Kunihiro, and Ryôichi Sasaki, editors, IWSEC, volume 6434 of Lecture Notes in Computer Science, pages 285–300. Springer, 2010.

[MOP06] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis Attacks: Revealing the Secrets of Smart Cards. [Springer,](http://www.springer.com/) December 2006. ISBN 0-387-30857-1, <http://www.dpabook.org/>.

[NBD+15] Xuan Thuy Ngo, Shivam Bhasin, Jean-Luc Danger, Sylvain Guilley, and Zakaria Najm. Linear complementary dual code improvement to strengthen encoded circuit against hardware trojan horses. In IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2015, Washington, DC, USA, 5-7 May, 2015, pages 82–87. IEEE, 2015.

- [PRB09] Emmanuel Prouff, Matthieu Rivain, and Régis Bevan. Statistical Analysis of Second Order Differential Power Analysis. IEEE Trans. Computers, 58(6):799–811, 2009.
- [Wag12] Mathias Wagner. 700+ Attacks Published on Smart Cards: The Need for a Systematic Counter Strategy. In Werner Schindler and Sorin A. Huss, editors, COSADE, volume 7275 of LNCS, pages 33–38. Springer, 2012.
- [ZF05] YongBin Zhou and DengGuo Feng. Side-channel attacks: Ten years after its publication and the impacts on cryptographic module security testing. Cryptology ePrint Archive, Report 2005/388, 2005. <http://eprint.iacr.org/2005/388>.