
deGoal a Tool to Embed Dynamic Code

Generators into Applications

Henri-Pierre Charles, Damien Couroussé, Victor Lomüller, Fernando A. Endo,
and Rémy Gauguey

CEA, LIST, Département Architecture Conception Logiciels Embarqués,
F-38054 Grenoble, France

firstname.lastname@cea.fr

Abstract. The processing applications that are now being used in mobile
and embedded platforms require at the same time a fair amount of pro-
cessing power and a high level of flexibility, due to the nature of the data
to process. In this context we propose a lightweight code generation tech-
nique that is able to perform data dependent optimizations at run-time
for processing kernels.

In this paper we present the motivations and how to use deGoal: a
tool designed to build fast and portable binary code generators called
compilettes.

1 Introduction

Today, software development is facing two competing objectives:

– Improve programmers efficiency by using generic and expressive program-
ming languages

– Generate efficient machine code to achieve the best execution speed and
energy efficiency

These two objectives are competing because the more expressive and abstract a
programming language is, the more difficult it is for a code generation tool-chain
to produce efficient machine code.

We believe that code optimization, driven by run-time data characteristics, is
a promising solution to tackle this issue. To achieve this, we propose deGoal: a
lightweight runtime solution for code generation.

deGoal was designed with the limitations of embedded systems computing
power and memory in mind: our bottom-up approach allows code generation of
specialized kernels, at runtime, depending on the execution context, the features
of the targeted processor, and furthermore on the data to process : their charac-
teristics and their values. Runtime code generation is achieved thanks to tiny
ad hoc code generators, called compilettes, which are embedded into the appli-
cation and produce machine code at runtime. Compilettes have only the strict
necessary processing intelligence to perform the required code optimizations. As
a consequence, code generation is:

A. Cohen (Ed.): CC 2014, LNCS 8409, pp. 107–112, 2014.
c© Springer-Verlag Berlin Heidelberg 2014



108 H.-P. Charles et al.

1. very fast : 10 to 100 times faster than typical JITs or dynamic compilers
which allow to use code generation inside the application and during the
code execution, not in a virtual machine.

2. lightweight : the typical size of compilettes is only a few kilobytes which
allows its use on constrained memory micro controllers such as the Texas
Instrument MSP430 which has only 512 bytes of available memory [1].
Standard code generators, such as LLC of the LLVM infrastructure, have
Mbytes of memory footprint, making their use impossible in this context.

3. produce compact code: as we are able to generate only the needed specialized
code and not all variants at the same time.

4. portable across processor family: i.e. a compiletteis portable on RISC plat-
forms or on GPU platforms.

5. able to perform cross-jit applications, i.e. a compilette can run on one pro-
cessor model and generate code for an other processor and download the
generated code.

2 Introduction to the deGoal Infrastructure

The deGoal infrastructure integrates a language for kernel description and a
small run-time environment for code generation. The tools used by the infras-
tructure are architecture agnostic, they only require a python interpreter and
an ANSI C compiler. We briefly introduce the language, how applications are
written with deGoal and how they’re are compiled and executed.

2.1 Kernel Description

We use a dedicated language to describe the kernel generation at runtime. This
language is mixed with C code, this latter allowing to control the code generation
performed in compilettes. This combination of C and deGoal code allows to
efficiently design a code generator able to:

1. inject immediate values into the code being generated,
2. specialize code according to runtime data, e.g. selecting instructions,
3. perform classical compilation optimizations such as loop unrolling or dead

code elimination.

deGoal uses a pseudo-assembly language whose instructions are similar to a
neutral RISC-like instruction set. The goal is to achieve:

– A rich instruction set focused on vector and multimedia instructions.
– The capability to use the run-time information in the specialized code.
– Cross-platform code generation: the architecture targeted by the compilette

may also be different from the architecture on which the code generator runs.
– Fast code generation, thanks to the “multiple time” compilation scheme.

The intermediate representation (IR) is processed at static compile time. At
run time the application has only to generate binary code mixed with data.



deGoal a Tool to Embed Dynamic Code Generators into Applications 109

Fig. 1. deGoal work flow: from the writing of applications source code to the execution
of a kernel generated at run-time

Table 1. deGoal support status

Architecture Port
status

SIMD
support

Instruction
bundling

ARM Thumb-2 (+NEON/VFP) N/A

STxP70 (STHORM) N/A

PTX (NVIDIA) N/A

ARM32 N/A

MSP430 N/A N/A

K1

MIPS N/A

2.2 Compilation Chain

To achieve fast code generation, the compilation chain is split into several steps
that run at different “times” (Figure 1).

Static Compilation. The compilette is rewritten into a standard C file by the
degoaltoc tool. The C version of the compilette is then statically compiled
and linked to the targeted architecture deGoal back-end using the C compiler
of the target platform.

Runtime. The application first invocates the compilette to generate the ma-
chine code of the kernel, once the optimizing data from the execution context
are available. The kernel can then be executed as a standard procedure.

Given that the back-end is composed of portable C functions, our compilation
chain is able to generate cross-platform code.



110 H.-P. Charles et al.

2.3 Run-time

At runtime, the compilette generates code according to run-time data and en-
vironment (rightmost block on Figure 1). At this time, registers are allocated,
instructions scheduled and bundled (for VLIW architectures).

3 Current Status

Table 1 details the current support status of deGoal (MIPS is a work in progress).
The column “SIMD support” shows the ability to take advantage of hardware
vectors efficiently. The last column indicates if deGoal is able to generate code
for VLIW processors.

The core infrastructure is licensed under a BSD style license but all hardware-
specific developments are restricted to their respective owners.

4 Related Works

There is an extensive amount of literature about approaches related to our work
with deGoal. Other works are related :

Java JIT mix interpretation and dynamic compilation for hotpots. Such tech-
niques usually require large memory to embed JIT framework, and perfor-
mance overhead. Some research works have tried to tackle these limitations:
memory footprint can be reduced to a few hundreds of KB [6], but the binary
code produced often presents a lower performance because of the smaller
amount of optimizing intelligence embedded in the JIT compiler [12].
Java JITs are unable to directly take data value as parameters. They use
indirect hotspot detection by tracing the application activity at runtime.
In deGoal, the objective is to reduce the cost incurred by runtime code gen-
eration. Our approach allows to generate code at least 10 times faster than
traditional JITs: JITs hardly go below 1000 cycles per instruction generated
while we obtain 25 to 80 cycles per instruction generated on the STxP70
processor.

LLVM [9] (Low Level Virtual Machine) is a compilation framework that can
target many architectures, including x86, ARM or PTX. One of its advan-
tages is the unified internal representation (LLVM IR) that encode a virtual
low-level instruction with some high-level information embedded on it. Var-
ious tools were built on top of it.
In deGoal, we don’t use IR at run-time, we keep only calls (with parameters)
to binary code generators.

Partial evaluation Our approach is similar to partial evaluation techniques
[4,8], which consists in pre-computing during the static compilation passes
the maximum of the generated code to reduce the run-time overhead. At
run-time, the finalization of the machine code consists in: selecting code
templates, filling pre-compiled binary code with data values and jump
addresses.



deGoal a Tool to Embed Dynamic Code Generators into Applications 111

Using deGoalwe compile statically an ad hoc code generator (the compilette)
for each kernel to specialize. The originality of our approach relies in the
possibility to perform run-time instruction selection depending on the data
to process [2].

DyC [7] is a tool that creates code generators from an annotated C code. Like
`C, it adds some tokens such as @ to evaluate C expressions and inject the
results as an immediate value into the machine code.
deGoal is different from DyC because the parameters given to the binary
run-time generators can drive specialized optimization such as loop-unrolling
or vectorizers.

5 Application Domain Examples

As examples, here are some references of work in different application domains
where compilettes have been used:

Specialized memory allocator: memory allocators are specialized depending
on the size of the memory to manage. Lhuilier et al [10] built an example
with a very low memory footprint, able to adapt itself to the size of data set.

Hardware support thanks to the fast generation code scheme we are able to
generate specialized code which run faster with a low overhead. We have
used this support in
Mono-core specialization in an MPSoC context where each node is able

to generate an optimized version of a matrix multiplication function [5].
GPU code specialization on an NVIDIA GPU we have developped a

“cross-JIT” approach where a CPU generate a specialized GPU code
depending on data sets [3].

Microcontrollers with hardware support for floating point arithmetics,
where we are able to generate on the fly 10× faster specialized floating
point routines [1].

Video compression need specialized code depending on data sets as shown
in [11]. deGoal can be used in this domain.

Thanks to the low memory footprint of both code generator and generated code,
deGoal is a perfect match for embedded systems.

This article is only an introductory tutorial; results with discussions about
acceleration and produced code size can be found in the following bibliography.

References

1. Aracil, C., Couroussé, D.: Software acceleration of floating-point multiplication
using runtime code generation. In: Proceedings of the 4th International Conference
on Energy Aware Computing, Istanbul, Turkey (December 2013)

2. Charles, H.P.: Basic infrastructure for dynamic code generation. In: Proceedings of
the Workshop “Dynamic Compilation Everywhere”, in Conjunction with the 7th
HiPEAC Conference, Paris, France (January 2012)



112 H.-P. Charles et al.

3. Charles, H.P., Lomüller, V.: Data Size and Data Type Dynamic GPU Code
Generation. In: GPU Design Pattern. Saxe-Coburg publications (2012)

4. Consel, C., Noël, F.: A general approach for run-time specialization and its ap-
plication to C. In: Proceedings of the 23th Annual Symposium on Principles of
Programming Languages, pp. 145–156 (1996)

5. Couroussé, D., Lomüller, V., Charles, H.P.: Introduction to Dynamic Code Gen-
eration – An Experiment with Matrix Multiplication for the STHORM Platform.
In: Smart Multicore Embedded Systems, ch. 6, pp. 103–124. Springer (2013)

6. Gal, A., Probst, C.W., Franz, M.: HotpathVM: An effective JIT compiler for
resource-constrained devices. In: VEE 2006, pp. 144–153. ACM, New York (2006)

7. Grant, B., Mock, M., Philipose, M., Chambers, C., Eggers, S.J.: DyC: An expres-
sive annotation-directed dynamic compiler for C. Theor. Comput. Sci. 248(1-2),
147–199 (2000)

8. Jones, N.D.: An introduction to partial evaluation. ACM Comput. Surv. 28,
480–503 (1996), http://doi.acm.org/10.1145/243439.243447

9. Lattner, C.: LLVM: An Infrastructure for Multi-Stage Optimization. Master’s the-
sis, Computer Science Dept., University of Illinois at Urbana-Champaign, Urbana,
IL (2002)

10. Lhuillier, Y., Couroussé, D.: Embedded system memory allocator optimization
using dynamic code generation. In: Proceedings of theWorkshop “Dynamic Compi-
lation Everywhere”, in Conjunction with the 7th HiPEAC Conference, Paris, France
(January 2012)

11. Sajjad, K., Tran, S.M., Barthou, D., Charles, H.P., Preda, M.: A global approach
for mpeg-4 avc encoder optimization. In: 14th Workshop on Compilers for Parallel
Computing (2009)

12. Shaylor, N.: A just-in-time compiler for memory-constrained low-power devices.
In: Java VM 2002, pp. 119–126. USENIX Association, Berkeley (2002)

http://doi.acm.org/10.1145/243439.243447

	deGoal a Tool to Embed Dynamic Code Generators into Applications
	Introduction
	Introduction to the deGoal Infrastructure
	Kernel Description
	Compilation Chain
	Run-time

	Current Status
	Related Works
	Application Domain Examples


