
& &

Runtime Code Generation to Secure Devices
D. Couroussé1 B. Robisson2 J.L. Lanet3 T. Barry1 P. Jaillon4 O. Potin4

Univ. Grenoble Alpes, F-38000 Grenoble, France (1)
CEA, LIST, MINATEC Campus, F-38054 Grenoble, France (1)

CEA-Tech DPACA, Gardanne, France (2)
INRIA Rennes, France (3)

Ecole Nationale Supérieure des Mines de Saint-Etienne (ENSM.SE) Saint-Etienne, France (4)

Core Idea: Runtime Code Polymorphism

Definition
Regularly changing the behaviour of a (secured) component, at runtime, while
maintaining unchanged its functional properties

cipher
program

clear
text

alea

cipher
key

ciphered
message

cipher
program

clear
text

polymorphic
code generator
polymorphic

code generator
alea

alea

cipher
key

ciphered
message

polymorphic
cipher instance

Default cipher scheme (static) With runtime code polymorphism

Definition

Regularly changing the behaviour of a (secured) component, at runtime,
while maintaining unchanged its functional properties.

What for?
Protection against reverse engineering of SW

the secured code is not available before runtime
the secured code regularly changes its form (code generation interval ω > 1)

Protection against physical attacks
polymorphism changes the spatial and temporal properties of the secured code: side
channel & fault attacks
combine with usual SW protections against focused attacks

How?
deGoal: runtime code generation for embedded systems

fast code generation
tiny memory footprint: proof of concept on TI’s MSP430 (512 bytes of RAM)

Compilettes & deGoal in a Nutshell

.c

.c.cdg d
e
G
o
a
l

.c

.c.cdg.c

static
binary

compilette

runtime
binary

kernel

HW description data

p
a
l
t
f
o
r
m

c
o
m
p
i
l
e
r

c
o
m
p
i
l
e
t
t
e

RUNTIMESTATIC
COMPILATION TIME

DESIGN
TIME

compilette

Aim
Modify kernel’s binary instructions

according to the input data

whenever needed at runtime

The deGoal framework builds compilettes
A compilette is:

an ad hoc code generator that targets one kernel

aimed to be invocated at runtime

Polymorphic Code Generation
deGoal runtime capabilities
Performed in this order:
1 register selection

2 instruction selection

3 instruction scheduling

Adaptation to achieve runtime code polymorphism:

Portability to very small processors and secure elements
Limited memory consumption
Fast runtime code generation

Ability to combine with hardware countermeasures

Introduce alea during runtime code generation [1,2,3]
Polymorphism:

random mapping to physical registers [1]
use of semantic equivalences [2]
instruction scheduling [3]
insertion of dummy operations [3]

Example: polymorphic AES
Polymorphic implementation of the
SubBytes function:
void gen_subBytes(cdg_insn_t* code

, uint8_t* sbox_addr

, uint8_t* state_addr)

{

#[

Begin code Prelude

Type uint32 int 32

Alloc uint32 state, sbox, i, x, y

mv state, #(state_addr)

mv sbox, #(sbox_addr)

mv i, #(0)

loop:

lb x, @(state+i) // x := state[i]

lb y, @(sbox+x) // y := sbox[x]

sb @(state+i), y // state[i] := y

add i, i, #(1)

bneq loop, i, #(16)

rtn

End

]#;

}

Execution times (in cycles), over
1000 runs:

min max average
reference 6385 6385 6385
code generator 5671 12910 9345
polymorphic instance 7185 9745 8303

Impact of the code generation
interval ω:

ω k %
1 2.76 53.0%
5 1.59 18.4%

20 1.37 2.1%
100 1.31 1.1%

k : overhead vs. reference implementation
%: percentage contribution of runtime code
generation to the performance overhead

References
Overview of our approach for runtime code generation with compilettes:

H.-P. Charles, D. Couroussé, V. Lomüller, F. A. Endo, and R. Gauguey,

“deGoal a Tool to Embed Dynamic Code Generators into Applications,” in

Compiler Construction, 2014, vol. 8409.

Runtime code generation for micro-controllers with less than 1kB RAM:

C. Aracil and D. Couroussé, “Software Acceleration of Floating-Point Mul-

tiplication using Runtime Code Generation,” in Proceedings of the 4th

International Conference on Energy Aware Computing, 2013.

Instruction scheduling for VLIW processors:

D. Couroussé, V. Lomüller, and H.-P. Charles, Introduction to Dynamic

Code Generation – an Experiment with Matrix Multiplication for the

STHORM Platform. Springer Verlag, 2013, pp. 103–124.

