Compilation and Runtime Code
Generation for Performance and
Security in Embedded Systems

DCE 2016 workshop during CGO / Barcelona

Damien Couroussé,
Henri-Pierre Charles

www.cea.fr January 2016

leti & List

Static Compiler Chain
Classical Compiler architecture : GCC, LLVM

m Driven by performance only

m Mono architecture
m Not energy aware
m

Not data dependent

Before / After

Designer
Programmer
Optimizer
User

Installation Static Link time
o B I

Idea Algorithm Data set

Transformations Phases

l.lnlrg‘l?l’ng

Address
computation

Strengh
reduction

atic Compiler

Alotation

- ode
V) | generation
Compilation and Runtime Code Generation for Performance and Security in Embedded Systems | DACLE Division | January 2016 | 2

Dynamic Compiler Chain

Future Compilers Architecture
Multi objective (execution time, power, thermal constraints)
Multi-target (Heterogeneous multi SoC)
Data driven (dynamically)

Before / After

s
2
2 g
])
a £ g
g 3
x o
, Installation Static Link time
Idea Algorithm time @ o ploy ion Data set
Transformations Phases
< > Laol?
Unrolling
- -
K< 47| computation
< |
‘ reduction
ey - Register
B “77| Allocation
Code
generation

vy

Compilation and Runtime Code Generation for Performance and Security in Embedded Systems | DACLE Division | January 2016 | 3

Definitions

Definitions
Static compilation “classical” binary code generation (gcc, icc, clang, ...)
Dynamic Compilation binary code generated at run-time (DBT)

JI'T run-time dynamic compilation based on complex
Intermediate representation (Java, LLVM)

Innovations

Compilette : small binary code generator embedded into application able
to optimize code depending on data sets

deGoal : a tool which help to generate Compilettes

Compilation and Runtime Code Generation for Performance and Security in Embedded Systems | DACLE Division | January 2016 | 4
CEA. All rights reserved

Static Compiler Versus Compilette
Static or dynamic code generation for performance

Program |

Program
Compiler chain

(Stmtkc of JTeed)

"/ Compller chaln
| mconyma)

R
L =

/ -
/@\ /-‘ ‘:

Binary code

Inputs
(Data sets) Compilette

A Output (data) Output (data)
Output (Performances) W (Performances)
—-— . . — . o—
Static Compiler Compilette
Run once Adapt on the fly
Does not know data set Knowledge of the
characteristics architecture
Slow compilation (even Knowledge of the
Wi&hpihlm_a)d Runtime Code Generation for Performance and securitya.pgli@aitiaas | DACLE Division | January 2016 | 5
v o

Features

deGoal features Obtained results
m Portable “assembly m Auto adaptive dynamic
language” libraries
m Source to source compiler m Runtime Portable
u Registers Optimization
m Typed : int, float, m Multiple metrics :
complex, ... m Faster generated code
m Vector support : m Smaller generated code
dynamic size m 3 order of magnitude
= Mix runtime data & faster than JIT/LLVM
binary code m 4 order of magnitude
smaller than JIT/LLVM
m Correct use of any ’
multimedia instruction

Compilation and Runtime Code Generation for Performance and Security in Embedded Systems | DACLE Division | January 2016 | 6
ce ights reserved

deGoal Flow

Objective : Binary Code Generation (Data dependent & Architecture
dependent)

Compilation flow

.cdg .C static| |runtime
Y binary binary
- degoal i -
AT ompilett ompf-jett
ASM kernel

-— — — —

developer, degoaltoc € compiler ¢ompilette RUN TIME

REWRITETIME STATIC - ek et
(source to source) COMPILATION
TIME

Compilation and Runtime Code Generation for Performance and Security in Embedded Systems | DACLE Division | January 2016 | 7
I g e

deGoal support

Architecture Port SIMD Instruction
status sup- bundling
port
ARM Thumb-2 (+NEON/VFP) | ¥V 000/In0
STxP70 (STHORM / P2012) | ¥ N/A VW
K1 (Kalray MPPA) | ¥V V7 | 4
PTX (GPU NVIDIA) | ¥V W N/A
ARM32 v X N/A
MSP430 Y. ON/A N/A
MIPS Y N/A O NJA
ARM64 € X N/A
X86 € X N/A

Compilation and Runtime Code Generation for Performance and Security in Embedded Systems | DACLE Division | January 2016 | 8
CEA. Al rights reserved

Code Polymorphism

Runtime Code Generation as

a Software Protection for
Embedded Systems

leti & List

Compilation and Runtime Code Gend

¢ Cea Polymorphic runtime code generation

Definition
B Regularly changing the behavior of a (secured) component, at runtime, while

maintaining unchanged its functional properties, with runtime code
generation

Runtime.Cod tondon a-Securivyein-Enibedisd-SysierR SR B3R 2540 20ks L 10

Polymorphic runtime code generation

Definition
B Regularly changing the behavior of a (secured) component, at runtime, while

maintaining unchanged its functional properties, with runtime code
generation

inputs inputs

¥

Runtime Code Polymorphic
outputs
Generator Instance

alea alea

Secured

outputs
Component

Lightweight
Portability: add security mechanisms everywhere it is needed.
no need for dedicated hardware,
but can cooperate with security-oriented hardware
Flexibility: customizable level of security, upgradable, patch-able.

Runtime.Cod tondon -Secuisyein-Enibeddiod-Sysierml AL B3R 54N 20k 61 2

Code polymorphism

Definition
E Regularly changing the behavior of a (secured) component, at runtime, while

maintaining unchanged its functional properties, with runtime code
generation

What for?
B Protection against reverse engineering of SW

== the secured code is not available before runtime

== the secured code regularly changes its form (code generation interval w)
B Protection against physical attacks

= polymorphism changes the spatial and temporal properties of the secured code: side channel
& fault attacks

= combine with usual SW protections against focused attacks
B Compatible with State-of-the-Art HW & SW Countermeasures

How?

B deGoal: runtime code generation for embedded systems
= fast code generation
= tiny memory footprint: proof of concept on TI's MSP430 (512 B RAM)
= Easy targeting of application-specific instrutions or HW features

A RuntioneCod oonb d-Securityein-Embedded-Systemi AL E BN 4 A%k 20kl 12

Countermeasures & polymorphism

State of the Art

Random register renaming [May 2011a, Agosta 2012]
Out-of-Order execution :
== At the instruction level [May 2011b, Bayrak 2012]
== At the control flow level [Agosta 2014, Crane 2015]
Execution of dummy instructions [Ambrose 2007, Coron 2009, Coron 2010]

A few proof-of-concept implementations, not suitable for embedded devices
[Amarilli 2011, Amarilli 2011, Agosta 2012]

Our approach

Pure software = portability, genericity

Combination of all the polymorphic levers found in the state of the art,
== Currently at the basic block level

Modest overhead (execution time & memory footprint)

With runtime code generation

deRunbimesCod ionaforR: o

e Sysher e AL BB A%k 20k 6 1 1

(o)

leti & List

Compilation and Runtime Code Generl

COGITO.mp4

B INSTITUT B INSTITUT
y . o o)
Let’s discuss ! ——
@ATEC“ digiteo

leti

Centre de Grenoble

	Introduction
	Static Compiler Chain
	Dynamic Compiler Chain
	Definitions
	Static Compiler Versus Compilette
	Features
	deGoal Flow
	deGoal support

