
&

www.cea.fr

Compilation and Runtime Code
Generation for Performance and
Security in Embedded Systems
DCE 2016 workshop during CGO / Barcelona

Damien Couroussé,
Henri-Pierre Charles

January 2016

Cliquez pour modifier le
style du titre

© CEA. All rights reserved&

Static Compiler Chain
Classical Compiler architecture : GCC, LLVM

Driven by performance only
Mono architecture
Not energy aware
Not data dependent

Before / After

Compilation and Runtime Code Generation for Performance and Security in Embedded Systems | DACLE Division | January 2016 | 2

Cliquez pour modifier le
style du titre

© CEA. All rights reserved&

Dynamic Compiler Chain
Future Compilers Architecture

Multi objective (execution time, power, thermal constraints)
Multi-target (Heterogeneous multi SoC)
Data driven (dynamically)

Before / After

Compilation and Runtime Code Generation for Performance and Security in Embedded Systems | DACLE Division | January 2016 | 3

Cliquez pour modifier le
style du titre

© CEA. All rights reserved&

Definitions

Definitions
Static compilation “classical” binary code generation (gcc, icc, clang, ...)
Dynamic Compilation binary code generated at run-time (DBT)

JIT run-time dynamic compilation based on complex
Intermediate representation (Java, LLVM)

Innovations
Compilette : small binary code generator embedded into application able

to optimize code depending on data sets
deGoal : a tool which help to generate Compilettes

Compilation and Runtime Code Generation for Performance and Security in Embedded Systems | DACLE Division | January 2016 | 4

Cliquez pour modifier le
style du titre

© CEA. All rights reserved&

Static Compiler Versus Compilette
Static or dynamic code generation for performance

Static Compiler
Run once
Does not know data set
characteristics
Slow compilation (even
with JIT)

Compilette
Adapt on the fly
Knowledge of the
architecture
Knowledge of the
applicationCompilation and Runtime Code Generation for Performance and Security in Embedded Systems | DACLE Division | January 2016 | 5

Cliquez pour modifier le
style du titre

© CEA. All rights reserved&

Features

deGoal features
Portable “assembly
language”
Source to source compiler
Registers

Typed : int, float,
complex, . . .
Vector support :
dynamic size

Mix runtime data &
binary code
Correct use of any
multimedia instruction

Obtained results
Auto adaptive dynamic
libraries
Runtime Portable
Optimization
Multiple metrics :

Faster generated code
Smaller generated code
3 order of magnitude
faster than JIT/LLVM
4 order of magnitude
smaller than JIT/LLVM

Compilation and Runtime Code Generation for Performance and Security in Embedded Systems | DACLE Division | January 2016 | 6

Cliquez pour modifier le
style du titre

© CEA. All rights reserved&

deGoal Flow

Objective : Binary Code Generation (Data dependent & Architecture
dependent)

Compilation flow

Compilation and Runtime Code Generation for Performance and Security in Embedded Systems | DACLE Division | January 2016 | 7

Cliquez pour modifier le
style du titre

© CEA. All rights reserved&

deGoal support
Architecture Port

status
SIMD
sup-
port

Instruction
bundling

ARM Thumb-2 (+NEON/VFP) OoO/InO
STxP70 (STHORM / P2012) N/A
K1 (Kalray MPPA)
PTX (GPU NVIDIA) N/A
ARM32 N/A
MSP430 N/A N/A
MIPS N/A N/A
ARM64 N/A
X86 N/A

Compilation and Runtime Code Generation for Performance and Security in Embedded Systems | DACLE Division | January 2016 | 8

Cliquez pour modifier le
style du titre

© CEA. All rights reserved&

&

Code Polymorphism

–

Runtime Code Generation as

a Software Protection for

Embedded Systems

Compilation and Runtime Code Generation for Performance and Security in Embedded Systems | DACLE Division | January 2016 | 9

Cliquez pour modifier le
style du titre

© CEA. All rights reserved&

Cliquez pour modifier le style du titre

DACLE Division| January 2014© CEA. All rights reserved | 11&

Polymorphic runtime code generation
Definition

Regularly changing the behavior of a (secured) component, at runtime, while
maintaining unchanged its functional properties, with runtime code
generation

Compilation and Runtime Code Generation for Performance and Security in Embedded Systems | DACLE Division | January 2016 | 10

Cliquez pour modifier le
style du titre

© CEA. All rights reserved&

Cliquez pour modifier le style du titre

DACLE Division| January 2014© CEA. All rights reserved | 12&

inputs

outputs
Secured

Component

alea

inputs

outputs
Secured

Component

alea

Polymorphic runtime code generation

Lightweight
Portability: add security mechanisms everywhere it is needed.

no need for dedicated hardware,
but can cooperate with security-oriented hardware

Flexibility: customizable level of security, upgradable, patch-able.

Definition
Regularly changing the behavior of a (secured) component, at runtime, while
maintaining unchanged its functional properties, with runtime code
generation

Polymorphic
Instance

Polymorphic
Instance

inputs

outputs

alea

Runtime Code
Generator

Polymorphic
Instance

Compilation and Runtime Code Generation for Performance and Security in Embedded Systems | DACLE Division | January 2016 | 11

Cliquez pour modifier le
style du titre

© CEA. All rights reserved&

Cliquez pour modifier le style du titre

DACLE Division| January 2014© CEA. All rights reserved | 13&

Code polymorphism
Definition

Regularly changing the behavior of a (secured) component, at runtime, while
maintaining unchanged its functional properties, with runtime code
generation

What for?
Protection against reverse engineering of SW

the secured code is not available before runtime
the secured code regularly changes its form (code generation interval ω)

Protection against physical attacks
polymorphism changes the spatial and temporal properties of the secured code: side channel
& fault attacks
combine with usual SW protections against focused attacks

Compatible with State-of-the-Art HW & SW Countermeasures

How?
deGoal: runtime code generation for embedded systems

fast code generation
tiny memory footprint: proof of concept on TI's MSP430 (512 B RAM)
Easy targeting of application-specific instrutions or HW features

Compilation and Runtime Code Generation for Performance and Security in Embedded Systems | DACLE Division | January 2016 | 12

Cliquez pour modifier le
style du titre

© CEA. All rights reserved&

Cliquez pour modifier le style du titre

DACLE Division| January 2014© CEA. All rights reserved | 14&

Countermeasures & polymorphism

State of the Art
Random register renaming [May 2011a, Agosta 2012]

Out-of-Order execution :

At the instruction level [May 2011b, Bayrak 2012]

At the control flow level [Agosta 2014, Crane 2015]

Execution of dummy instructions [Ambrose 2007, Coron 2009, Coron 2010]

A few proof-of-concept implementations, not suitable for embedded devices
[Amarilli 2011, Amarilli 2011, Agosta 2012]

Our approach
Pure software → portability, genericity

Combination of all the polymorphic levers found in the state of the art,

Currently at the basic block level

Modest overhead (execution time & memory footprint)

With runtime code generation

Compilation and Runtime Code Generation for Performance and Security in Embedded Systems | DACLE Division | January 2016 | 13

Cliquez pour modifier le
style du titre

© CEA. All rights reserved&

&

Demo

8-bit AES
STM32 (Cortex-M3)

Compilation and Runtime Code Generation for Performance and Security in Embedded Systems | DACLE Division | January 2016 | 14

Cliquez pour modifier le
style du titre

© CEA. All rights reserved&

Demo

Compilation and Runtime Code Generation for Performance and Security in Embedded Systems | DACLE Division | January 2016 | 15

COGITO.mp4

Centre de Grenoble
17 rue des Martyrs

38054 Grenoble Cedex

Centre de Saclay
NanoInnov PC 172

91191 Gif sur Yvette Cedex

Let’s discuss !

	Introduction
	Static Compiler Chain
	Dynamic Compiler Chain
	Definitions
	Static Compiler Versus Compilette
	Features
	deGoal Flow
	deGoal support

