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Static Compiler Chain
Classical Compiler architecture : GCC, LLVM

m Driven by performance only

m Mono architecture
m Not energy aware
m

Not data dependent
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Dynamic Compiler Chain

Future Compilers Architecture
Multi objective (execution time, power, thermal constraints)
Multi-target (Heterogeneous multi SoC)
Data driven (dynamically)
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Definitions

Definitions
Static compilation “classical” binary code generation (gcc, icc, clang, ...)
Dynamic Compilation binary code generated at run-time (DBT)

JI'T run-time dynamic compilation based on complex
Intermediate representation (Java, LLVM)

Innovations

Compilette : small binary code generator embedded into application able
to optimize code depending on data sets

deGoal : a tool which help to generate Compilettes
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Static Compiler Versus Compilette
Static or dynamic code generation for performance
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Static Compiler Compilette
Run once Adapt on the fly
Does not know data set Knowledge of the
characteristics architecture
Slow compilation (even Knowledge of the
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Features

deGoal features Obtained results
m Portable “assembly m Auto adaptive dynamic
language” libraries
m Source to source compiler m Runtime Portable
u Registers Optimization
m Typed : int, float, m Multiple metrics :
complex, ... m Faster generated code
m Vector support : m Smaller generated code
dynamic size m 3 order of magnitude
= Mix runtime data & faster than JIT/LLVM
binary code m 4 order of magnitude
smaller than JIT/LLVM
m Correct use of any ’
multimedia instruction
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deGoal Flow

Objective : Binary Code Generation (Data dependent & Architecture
dependent)

Compilation flow
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deGoal support

Architecture Port SIMD Instruction
status  sup- bundling
port
ARM Thumb-2 (+NEON/VFP) | ¥V 000/In0
STxP70 (STHORM / P2012) | ¥ N/A VW
K1 (Kalray MPPA) | ¥V V7 | 4
PTX (GPU NVIDIA) | ¥V W N/A
ARM32 v X N/A
MSP430 Y. ON/A N/A
MIPS Y N/A O NJA
ARM64 € X N/A
X86 € X N/A
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Code Polymorphism

Runtime Code Generation as

a Software Protection for
Embedded Systems
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¢ Cea Polymorphic runtime code generation

Definition
B Regularly changing the behavior of a (secured) component, at runtime, while

maintaining unchanged its functional properties, with runtime code
generation
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Polymorphic runtime code generation

Definition
B Regularly changing the behavior of a (secured) component, at runtime, while

maintaining unchanged its functional properties, with runtime code
generation

inputs inputs

¥

Runtime Code Polymorphic
outputs
Generator Instance

alea alea

Secured

outputs
Component

Lightweight
Portability: add security mechanisms everywhere it is needed.
no need for dedicated hardware,
but can cooperate with security-oriented hardware
Flexibility: customizable level of security, upgradable, patch-able.
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Code polymorphism

Definition
E Regularly changing the behavior of a (secured) component, at runtime, while

maintaining unchanged its functional properties, with runtime code
generation

What for?
B Protection against reverse engineering of SW

== the secured code is not available before runtime

== the secured code regularly changes its form (code generation interval w)
B Protection against physical attacks

= polymorphism changes the spatial and temporal properties of the secured code: side channel
& fault attacks

= combine with usual SW protections against focused attacks
B Compatible with State-of-the-Art HW & SW Countermeasures

How?

B deGoal: runtime code generation for embedded systems
= fast code generation
= tiny memory footprint: proof of concept on TI's MSP430 (512 B RAM)
= Easy targeting of application-specific instrutions or HW features
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Countermeasures & polymorphism

State of the Art

Random register renaming [May 2011a, Agosta 2012]
Out-of-Order execution :
== At the instruction level [May 2011b, Bayrak 2012]
== At the control flow level [Agosta 2014, Crane 2015]
Execution of dummy instructions [Ambrose 2007, Coron 2009, Coron 2010]

A few proof-of-concept implementations, not suitable for embedded devices
[Amarilli 2011, Amarilli 2011, Agosta 2012]

Our approach

Pure software = portability, genericity

Combination of all the polymorphic levers found in the state of the art,
== Currently at the basic block level

Modest overhead (execution time & memory footprint)

With runtime code generation
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